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Abstract. Graph Convolutional Networks (GCNs) are pivotal in analyzing graph
data. However, as graph complexity increases, heterophily challenges the tradi-
tional GCNs that rely on homophily assumptions. These challenges have elicited
various mitigation attempts, which, however, have only achieved partial success.
They either inadequately harness the structural intricacies of the data or incorporate
irrelevant information, thereby undermining their efficacy in complex heterophilic
graphs. To address this, we introduce the Hybrid Filtering Graph Convolutional
Network (HFGCN), an innovative framework integrating three specialized filter-
ing mechanisms for spectral domain node aggregation. Inspired by the Power-
law transformation, HFGCN employs low-pass filters for homophilic nodes,
high-pass filters for heterophilic nodes, and a self-aggregation filter for nodes
reliant on their information. An attention mechanism further refines node inter-
action based on attributes. Our evaluations across seven diverse datasets demon-
strate HFGCN’s superior adaptability and performance, surpassing state-of-the-art
models in handling both homophilic and heterophilic graphs.
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1 Introduction

Graph Convolutional Networks (GCNs) have significantly advanced graph data analysis,
enabling effective feature computation by aggregating a node’s features with those of
its neighbors [12, 18, 22]. Pioneering models such as GAT [16], GraphSAGE [8], and
GraphHeat [19], have shown enhanced performance in various tasks. These models are
based on the homophily principle, where it is assumed that connected nodes are likely
to belong to the same class or share similar attributes [23].

However, many real-world graphs exhibit heterophily, where connected nodes are of
different classes or possess different attributes, challenging the extraction and utilization
of structural information for tasks such as information retrieval. This deviation from
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homophily affects the performance of traditional GCNs designed under homophilic
assumptions [14, 23]. In response, models like Geom-GCN [14], MixHop [1], H2GCN
[23], GPR-GNN [5], and FAGCN [2] have been developed to improve GCN performance
across heterophilic contexts.

While this approach enables the aggregation of distant, similar nodes, it may also
inadvertently introduce irrelevant information. Given the prevalence of both homophilic
and heterophilic nodes in complex graphs, an ideal GCN model should efficiently utilize
both graph structure and node attribute information for customized node aggregation.
The spectral domain offers a promising avenue for this, providing a global perspective
on the differences in node connectivity relationships through the decomposition of the
normalized Laplacian matrix, which can reveal implicit structural information [7]. This
paper introduces the Hybrid Filter-based Graph Convolutional Network (HFGCN), a
novel model that redefines neighbor identification from a spectral domain perspective.
Inspired by the Power-law transformation [4], HFGCN utilizes the eigenvectors of the
normalized Laplacian matrix to develop foundational filters that enrich structural infor-
mation and enable adaptive node aggregation. An attention-like mechanism [15] further
enhances the model by discerning the significance of neighbors based on node attributes,
significantly improving adaptability and performance across different graph structures.
The main contributions are as follows:

— Hybrid Filter: Combines low-pass and high-pass filters, uniquely catering to nodes
based on their homophilic or heterophilic nature, with a self-aggregating filter for
nodes reliant mainly on their information.

— Attribute Aggregation: Integrates an attribute weight assignment matrix C, optimiz-
ing both structure-based and attribute-based information processing, ensuring peak
performance across various node homophily levels.

— Evaluate and Visualize: Conducts extensive testing on seven real-world networks,
demonstrating the model’s effectiveness and adaptability, and highlighting clear
advantages over existing approaches.

The remainder of this paper is organized as follows: Sect. 2 provides a review of
the literature related to our work. Section 3 introduces preliminary concepts. Section 4
details the methodology of the HFGCN model; Sect. 5 discusses the experimental setup
and results; and Sect. 6 draws conclusions.

2 Related Work

2.1 Beyond Homophily in GNN

To address the limitations of homophily, several models have been developed for het-
erophilic contexts, categorized by their strategies: Geom-GCN alters graph structures
to connect similar nodes spatially [14]. MixHop and H2GCN mix features from multi-
order neighborhoods to enrich node representations [1, 23]. GPR-GNN and FAGCN
introduce negative weights for feature differentiation between node classes [2, 5]. These
models enhance spatial domain insights but often struggle to fully leverage structural
information or exclude irrelevant data. Our approach seeks to address these gaps from a
spectral domain perspective.
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2.2 Spectral-Based GNN

Spectral-based GNNS, initiated by Bruna et al. with Spectral CNN, faced challenges in
large graph scalability due to computational limits [3]. ChebNet improved efficiency
through Chebyshev polynomial-based convolutions [6], leading to the development
of GCN, which facilitated a clearer connection to spatial interpretations [10]. Fur-
ther advancements by GraphHeat and GWNN optimized spectral analysis using heat
kernel and wavelet basis transformations, respectively [19]. Our work builds on these
foundations, exploring new directions in spectral-based GNNs, particularly through the
application of wavelet transforms to address the nuanced challenges presented by both
homophilic and heterophilic graphs [21].

3 Preliminary

3.1 Graph Definition

LetG = (V, &, A, X, Y) denote an undirected graph, where V = {v;|i = 1,2, ..., n}is
the set of nodes, & = {(vi, vj)|vi, vj € Vandv;, vjareconnected}. The adjacency matrix
is defined as A € R""whereA;; = Aj;, and A;; = 1 if (vi, vj) € &, otherwise, A;; = 0.
X € R™¢ is a set of node attributes, where c¢ represents the number of attributes.
Y ={yli=1,2,---,n}isthenode label setand Vy; € Y, y; € {0, --- , k — 1}, where k
is the number of categories. Each node has only one corresponding label. Laplace matrix
is defined as L = I — D~1/2AD~ /2 where I is the identity matrix.

The homophily ratio is a measure indicating the extent to which nodes of the same
class are connected within G. The graph-level homophily ratio is defined as:

- ‘{Vj|Vj€MAYiZYj}‘
ME |

(1

where /\/’> denotes the set of neighbors of node i. A graph is generally considered
homophilic if # > 0.5.

3.2 Graph Fourier Transform

The normalized Laplacian matrix L is a symmetric matrix, so its spectral decomposition
can be written as L = UAU ', where U = (uy, ua, - -+ , up), contains n orthogonal
eigenvectors, and A = diag({ki}?zl) is a diagonal matrix, where A; € [0, 2]. Using the
eigenvectors as a basis, the graph Fourier transform of a signal x € R" on G is defined
as X = U x, and its inverse as x = UZX. The spectral convolution of a signal x with a
filter gg = diag(0) on the graph is:

g9 *x=UgyU'x 2)

where gy is often expressed as a function of A, e.g., in ChebNet, go(A) = ZkK:_OI Ok A,
and in GCN, a simplified form go(A) = 6( — A) is used.
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4 The Proposed Model - HFGCN

This section outlines the motivation behind the HFGCN, details the implementation
of the hybrid filter and attribute aggregation mechanism, and presents the complete
architecture of the model.

4.1 Motivation

The inception of HFGCN is inspired by an analogous principle from the realm of
image processing, specifically the power-law transformation, which is a cornerstone
technique for contrast enhancement. In image processing, the power-law transformation
is employed to dynamically adjust the brightness of an image, effectively mapping a
constrained range of input intensities to a broader spectrum of output values. The basic
form of power-law transformation is [4]:

s=c-r’ 3

where r and s are the input and output intensities, respectively; ¢ and y are positive
constants. For lower intensity values, it expands the range, thereby darkening darker
regions of the image. Conversely, for higher intensities, it compresses the range, thus
brightening the brighter areas[11]. This selective enhancement or suppression across
the intensity spectrum significantly improves the overall contrast of the image, making
subtle details more discernible.

Drawing a parallel from this technique to the domain of graph networks, we observe
a similar need for nuanced differentiation among nodes based on their connectivity and
attributes. Homophily, where connected nodes exhibit similar traits or classifications,
benefits from aggregation techniques that enhance these similarities. Conversely, het-
erophily involves connections between dissimilar nodes, requiring strategies that accen-
tuate these differences to enhance the graph’s overall informational contrast. To navigate
this dichotomy, our GCN model employs a hybrid filtering approach, analogous to using
multiple gamma transformations tailored to specific image regions, which includes:

— A low-pass filter that smooths connected nodes’ features to enhance homophilic
interactions, similar to how darkening lower intensities in images increases unifor-
mity.

— A high-pass filter that accentuates the differences in heterophilic nodes, analogous
to brightening higher intensities in images to highlight disparities.

— A self-aggregating filter designed to preserve the intrinsic characteristics of nodes
that rely minimally on external data, maintaining their original representations.

The architecture of HFGCN is visualized in Fig. 1, highlighting the strategic inte-
gration of the three filters: low-pass, high-pass, and self-aggregating. To make the model
better adaptable, our filter contains two parts, the structure weight matrix and the attribute
weight matrix, respectively. Each filter comprises a structural weight assignment matrix
S, derived from the spectral domain to reflect graph topology, and an attribute weight
assignment matrix C, learned from node attributes. This dual-matrix setup ensures a
comprehensive consideration of both structural and attribute data, enhancing the model’s
ability to aggregate information effectively.
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Fig. 1. The architecture of HFGCN.

4.2 Hybrid Filter

In the graph Fourier transform, given that U is orthogonal and gy typically a diagonal
matrix, the spectral convolution in (2) can be expanded as:

T " T
goxx =UgU x = Ziz]aiuiui X 4)
Here, uiuiT acts as a set of basic filters, and «; is the corresponding coefficient. This repre-
sentation allows us to interpret the spectral domain’s eigenvalues as indicators of graph
signal smoothness, akin to frequencies, with lower eigenvalues indicating smoother
changes (low frequencies) and higher eigenvalues denoting more significant differences

(high frequencies) across adjacent nodes. Given the relationship:

1
ul—l—Lul = )"i = zz:lzlz;/l:lAU(ul - ”/)2 (5)

we deduce that basic filters associated with smaller eigenvalues function as low-pass
filters, enhancing homophily nodes’ similarity, whereas those linked to larger eigenvalues
serve as high-pass filters, suitable for emphasizing heterophily nodes’ dissimilarity.

By leveraging the normalized Laplacian matrix, L = I — D IAD™7 = UAU T,
and redefining D’%AD’% = U —A)UT.Let \g = 1 — A, we introduce 4. The
frequency response functions for k4 are then defined to obtain the structural weight
distribution matrix S for both filters, inspired by the power-law transformation.

Low-Pass Filter. The design of the low-pass filter is rooted in the principle of promoting
signal smoothness across the graph, particularly beneficial for homophilic regions where
nodes of similar classes or characteristics are connected. The frequency response function
for the low-pass filter is carefully chosen to enhance the weights of signals associated
with lower eigenvalues ()4), thereby encouraging the propagation of similar features
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among closely connected nodes. This approach is encapsulated in the function:

. )\i)»A >0
f(xA) = {_V\/__M)\A <0 (4)

where y acts as a hyperparameter.

High-pass Filter. Conversely, the high-pass filter is engineered to accentuate the dif-
ferences in signals between nodes, a property that is particularly useful for delineat-
ing heterophilic relationships within the graph. By emphasizing the higher eigenvalues
(\4), this filter aims to highlight the discrepancies in node features, thereby facilitating
the identification and preservation of boundaries between dissimilar node classes. The
frequency response function is given by:

ya/Aara =0

5
—23xa <0 ©)

fQa) ={

Self-aggregating Filter. To accommodate nodes requiring minimal neighbor informa-
tion aggregation, a self-aggregating filter is introduced. This filter aims to preserve the
previous layer’s node representation. The structural weight assignment matrix for this
filter is a diagonal matrix, derived from the normalized adjacency matrix D~1/2AD~1/2,
where A is the adjacency matrix with the self-loop added, and D is the corresponding
degree matrix. Therefore, the structure weight distribution matrix can be written as:

S = Udiag({f (ha,)}1_)U T ©

4.3 Attribute Aggregation

In the HFGCN model, the attribute weight distribution matrix C is expertly designed to
complement the structural weight matrix S, enhancing the model’s capability to integrate
and analyze information based on both node connectivity and attributes. The construction
of C employs an attention-like mechanism[15], which quantifies the relative significance
between nodes as follows:

Cjj = sigmoid < a, X;||Xj > @

where a is a learnable parameter vector. And X;||X; denotes concatenation of the attribute
vectors X; and X; of nodes i and j, respectively. The sigmoid function ensures that the
attention coefficients are bounded between 0 and 1, representing the strength of influence
between nodes.

To reduce noise from less relevant or distant nodes, the model confines the neigh-
borhood scope to the third order, thus enhancing computational effciency and ensuring
precise interpretation. Differing from standard attention models, the coefficients C; ; are
not normalized across a node’s neighbors. This design choice is deliberate, allowing the
raw sigmoid values to reflect the absolute importance of each connection, free from the
constraints of a normalized distribution. The fusion of S and C to form each filter F
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is achieved through an element-wise multiplication ®, symbolizing the intersection of
structural connectivity and attribute affinity:

F=8S0C ®)

This mechanism ensures that node representations are profoundly influenced by
both graph structure and node-specific attributes, with variations in C across different
nodes and filters illustrating the variable significance of attributes. Nodes are able to
adaptively prioritize different filters based on their unique characteristics. Additionally, a
skip-connection mechanism [20] is incorporated to promote model stability and smooth
learning, which not only carries forward output from the previous layer but also the
initial node representations, enhancing information continuity and gradient flow across
network layers.

4.4 Forward Propagation

The forward propagation mechanism of the HFGCN is formulated as follows:

X0 = oW X),
XD =ex© + (Flow + Fhigh + Fself)X(lil): )
X o) — softmax (® (WX DY),

where:

— X O represents the initial node attributes transformed into a lower-dimensional space
through a Multi-Layer Perceptron (MLP) layer ®(W;X), capturing essential features
for node classification.

— X® denotes the node representation at each hidden layer (/), updated through a
hybrid filtering approach that incorporates low-pass (Fiow), high-pass (Fhign), and
self-aggregating (Feir) filters to enrich the representation by blending structural and
attribute information.

— X © j5 the final node representation projected onto a k-dimensional space corre-
sponding to the number of node categories, with the softmax function outputting the
probability distribution over categories.

To ensure efficiency, the structure weight assignment matrix is precomputed to min-
imize computational overhead associated with decomposing L. With the requirement
for adjacency matrix decomposition, HFGCN exhibits a time complexity of O(nz) and
a space complexity of O(nz), where n is the number of nodes. This computational pro-
file is on par with state-of-the-art models such as H2GCN [23], offering competitive
performance while introducing advanced filtering mechanisms tailored to the complex
dynamics of graph structures.

5 Experiments

5.1 Datasets

We selected seven commonly used datasets to evaluate our approach, with their statistics
presented in Table 1.
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Table 1. Datasets statistics

Dataset Nodes Edges Features Classes Homophily
Cora 2708 5429 1433 7 0.81
Citeseer 3327 4732 3703 6 0.74
Texas 183 309 1703 5 0.11
Wisconsin 251 499 1703 5 0.21
Cornell 183 295 1703 5 0.30
Chameleon 2277 36101 2325 5 0.23
Squirrel 5201 217073 2089 5 0.22

Citation network datasets such as Cora and Citeseer, represent typical homophilic
graphs where nodes are papers and edges represent citations. We adopt a division of
48% training, 32% validation, and 20% testing. Datasets from WebKB (e.g., Texas,
Wisconsin, Cornell) and Wikipedia (e.g., Chameleon, Squirrel) were selected to repre-
sent heterophilic graphs. We divide these datasets in a 60%, 20%, and 20% ratio for
training, validation, and testing, respectively.

5.2 Experimental Settings

Baseline. To evaluate the effectiveness of our method, we compare HFGCN with nine
baseline models: MLP, GCN [100], GAT [16], GraphHeat [19], Geom-GCN [14], GPR-
GNN [5], FAGCN [2], H2GCN [23], and HOG-GCN [17]. The latter five models are
tailored for heterophilic graph, whereas GCN, GAT, and GraphHeat are designed under
the homophily assumption. All models, except MLP, are configured according to their
original settings for optimal performance.

Hyperparameters. For all experiments, we run 1500 epochs with an early stopping
patience set at 100. The learning rate is fixed at 0.01, and the hidden unit size is set to
64. For citation datasets, we use 2 layers, a dropout rate of 0.6, weight decay of le—3,
€ = 0.4,and y = 0.4 for Cora, and y = 0.3 for Citeseer. For WebKB datasets, we adjust
the parameters specifically for each dataset: Texas, Wisconsin, and Cornell have their
configurations set to optimize performance. Given the challenging nature of heterophilic
graphs, these datasets employ a division ratio of 60% training, 20% validation, and
20% testing. For Wikipedia datasets, which exhibit poor performance with existing
methods, we preprocess features using t-SNE [13], choosing D~1/2AD~1/2X as model
input for better representation. HFGCN configurations are adapted accordingly, with
specific layer, dropout, y, and € values set for Chameleon and Squirrel. All models are
optimized using the Adam optimizer [11], selecting the best-performing model on the
validation set for testing. Results are averaged over 10 runs, reporting both mean and
standard deviation.
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5.3 Results

We evaluate the effectiveness of HFGCN under the node semi-supervised classification
task. Similar to previous methods, we use classification accuracy as the evaluation crite-
rion. Experimental results of all methods under different datasets are shown in Table 2.
Our method performs well on both homophilic and heterophilic graphs with good robust-
ness. HFGCN has advantages over baselines on five real networks, and the performance
is second only to H2GCN on Wisconsin and Chameleon datasets. Although the accu-
racy rate in Wisconsin is 2% lower than that of H2GCN, since the network has only 251
nodes, there are only 50 nodes in the test set, the difference of 2% is only one node.

Table 2. Node classification accuracy on seven datasets. The best results are in bold and the
second best results are underlined.

Method Cora Citeseer Texas Wisconsin
MLP 7437+£199 |71.96+1.15 |84.61 £5.19 |84.72+7.97
GCN 8541 £2.04 |7574+£187 [54.69+526 |51.944+5.11
GAT 87.73+£1.19 |7620+£1.32 |55.17£5.14 |50.67 +10.86

GraphHeat 8791 +£1.80 |76.67+£149 |80.87£7.61 80.09 £ 8.78
Geom-GCN | 84.49+1.17 |7449+159 |60.02+£4.53 | 68.60=+6.07
GPR-GNN 8620 £1.55 |7444+£155 |86.49+£2.83 8507459

FAGCN 8380+ 189 |7533+£192 [8145+545 |84.05+£7.10
H2GCN 88.01 +1.19 |76.60+1.83 |85.01 £3.77 |88.45+£5.75
HOG-GCN 86.40 £ 1.54 |75404+£2.27 |85.25+4.51 |83.08+£540
HFGCN 88.55+142 | 7723 +£1.58 |88.26+3.12 |86.65+5.30
Method Cornell Chameleon Squirrel

MLP 82.30 £4.43 79.07 £ 2.07 73.65 £ 1.12
GCN 59.65 £ 7.69 5598 £0.84 40.36 £ 1.44
GAT 60.77 £ 11.18 62.63 £2.94 4448 £ 1.67
GraphHeat 50.08 + 13.63 74.63 + 2.07 62.23 £ 1.55
Geom-GCN 59.12 £ 6.01 62.40 + 3.54 45.05 + 3.00
GPR-GNN 83.86 +4.45 60.51 £4.76 45.59 £3.50
FAGCN 78.78 £ 6.14 76.72 £ 2.45 68.84 £ 1.62
H2GCN 78.82 £5.17 79.93 £ 2.02 73.51 £0.97
HOG-GCN 81.52 £ 6.60 71.06 + 3.58 51.96 £2.94
HFGCN 84.47 £+ 4.80 79.63 £ 1.71 73.70 £ 1.42

In addition, in the citation network, compared with GraphHeat, which uses a lower-
pass way to model the smoothness of homophilic graphs, HFGCN can also better capture
the features of a small number of heterophilic nodes in homophilic graphs.
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5.4 Visualization
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Fig. 2. Visualization results.

In order to visually demonstrate the learning effect of our method, we use t-SNE
to map the representation of the nodes in the network’s last layer to a two-dimensional
space and visualize it. Figure 2 is the visualization results of the Cora and Chameleon
datasets under a specific division, respectively, and all nodes are colored with ground-
truth labels. For comparison, we selected two baseline models with better performance:
GraphHeat and H2GCN. The ideal node representation should be compact within the
class and have clear boundaries between classes in the visualization results. For the Cora
dataset, the node representations learned by HFGCN and H2GCN have clear advantages
over GraphHeat. The low-pass mechanism of GraphHeat makes the representation of
nodes of different classes more concentrated. For the Chameleon dataset, compared
with the three baseline methods, the node representations learned by HFGCN are more
clearly demarcated between different classes. The visualization results can illustrate the
effectiveness of our hybrid filtering idea on graphs of different homophily rates to a
certain extent.

6 Conclusion

We introduced HFGCN, an innovative approach designed for the adaptive aggregation
of node information in graph-based data. Leveraging spectral domain insights, HFGCN
employs low-pass, high-pass, and self-aggregating filters to address the diverse connec-
tivity patterns. This methodology, supplemented by an attention mechanism for attribute-
based neighbor importance, enables nuanced and efficient content analysis and retrieval
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across complex graph structures. Our comprehensive experiments across seven datasets
underscore HFGCN’s effectiveness for both homophilic and heterophilic graphs. How-
ever, the scalability of HFGCN, particularly in handling large-scale graphs, presents a
challenge due to increased computational demands.
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