
Developing Real-Time Scheduling Policy by Deep
Reinforcement Learning

Zitong Bo∗†, Ying Qiao∗, Chang Leng∗, Hongan Wang∗, Chaoping Guo∗ and Shaohui Zhang‡
∗Beijing Key Lab of Human-Computer Interaction, Institute of Software, Chinese Academy of Sciences

†University of Chinese Academy of Sciences
‡Beijing National Speed Skating Oval Operation Co., Ltd

zitong2019@iscas.ac.cn

Abstract—Designing scheduling policies for multiprocessor
real-time systems is challenging since the multiprocessor schedul-
ing problem is NP-complete. The existing heuristics are cus-
tomized policies that may achieve poor performance under some
specific task loads. Thus, a new design pattern is needed to
make the multiprocessor scheduling policies perform well under
various task loads. In this paper, we investigate a new real-
time scheduling policy based on reinforcement learning. For any
given real-time task set, our policy can automatically derive
a high performance by online learning. Specifically, we model
the real-time scheduling process as a multi-agent cooperative
game and propose multi-agent self-cooperative learning that
overcomes the curse of dimensionality and credit assignment
problems. Simulation results show that our approach can learn
high-performance policies for various task/system models.

Index Terms—real-time scheduling, reinforcement learning,
multiprocessor system, deep neural network

I. INTRODUCTION

Developing scheduling policies for aperiodic tasks running

in multiprocessor real-time systems is always challenging

work. The multiprocessor scheduling problem is NP-complete

[1], which means that the optimal scheduling policy cannot

be implemented in polynomial time unless P=NP. There-

fore, some heuristic policies have been investigated, such

as GEDF [2], PFair [3]–[5], EDF-BF [6], EDHS [7],etc.

These policies are simple to implement since they determine

priorities directly by task parameters. Only PFair is optimal

for periodic tasks when system utilization is less than the

number of processors [4]. However, the runtime overhead of

PFair is too high from the implementation point of view.

Furthermore, all of the above heuristic policies may achieve

poor performance in real-time systems executing aperiodic

loads. Traditional heuristics are customized by the expert

depending on his domain knowledge. In practice, there are two

significant drawbacks to this traditional design pattern. Firstly,

the complete prior knowledge of task behaviors is unlikely to

be available, so that employing experts to design customized

scheduling policy could be very costly. Secondly, real-time

systems in the real world often violate the assumptions of

the customized scheduling policy. For example, a system may

have non-negligible high preemption overhead or migration

overhead. Therefore, a new design pattern for developing real-

time scheduling policies is urgently needed.

One ideal approach to the above issues is to develop an

’artificial expert’ on real-time scheduling, i.e., implementing

a method that can automatically generate customized policies

for various multiprocessor systems with given system and task

information.

We find that reinforcement learning (RL) is a promising

approach to develop sterling scheduling policies. With the

advent of AlphaGo [8], reinforcement learning has gradually

become a hotspot in the artificial intelligence (AI) research

area. The integration of the deep learning has greatly promoted

successful applications of reinforcement learning in solving

real-world complex applications [9], such as chips design

[10], robotic manipulation [11] and video games [12]. Real-

time scheduling problems have one common key feature with

the above applications, i.e., they are massive search problems

where exhaustive or heuristic-based methods cannot scale. The

considerable success of the above applications has shown that

reinforcement learning is good at solving such massive search

problems. Therefore, we deem that reinforcement learning is

a promising way to develop real-time scheduling policies.

However, using RL to learn real-time scheduling policy is

not trivial work. In most real-time systems, aperiodic tasks

may have more than one active instance in some time steps

so that the number of instances continuously changes during

system runtime. Hence, the number of the system states grows

exponentially with the number of instances, resulting in poor

convergence for RL. This phenomenon is called the curse

of dimensionality [13], which exists extensively in machine

learning. Besides, since real-time systems are sensitive to time

overheads, the learned scheduling policies should have low

overheads, which further increases the designing difficulty of

the policy architecture. Moreover, the reward function design

for RL has a significant influence on the performance of the

learned scheduling policy. Thus, designing a suitable policy

architecture and reward function is also challenging work.

In this paper, we investigate a novel multi-agent deep

reinforcement learning framework to learn real-time schedul-

ing policies having high success ratio for multiprocessor

systems. Our approach keeps computing proper priorities for

task instances, which should be strongly desired by real-time

multiprocessor systems that deal with unpredictable frequent

task instance arrivals. The proposed framework can also be

easily extended to many applications having different system
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models. Our main contributions are summarized as follows:

(1) We formulate the real-time scheduling process as

Markov game and investigate a new real-time scheduling

method based on reinforcement learning, i.e., a deep re-

inforcement learning framework to learn scheduling poli-

cies online, improving the scheduling performance of real-

time multiprocessor systems. Instead of directly designing

heuristics for specific task sets, the proposed reinforcement

learning approach can derive high-performance scheduling

policies through continuously improving the policy online.

This framework can be extended to other real-time systems

with various characteristics.

(2) We propose a multi-agent self-cooperative learning

method, a novel reinforcement learning algorithm that solves

the credit assignment problem in the Markov game. The

proposed method is based on multi-agent actor-critic, and

we also adopt the framework of centralized training with

decentralized execution.

(3) We have implemented the framework as well as a multi-

agent self-cooperative learning algorithm, using Python and

PyTorch [14]. Simulation results for randomly generated loads

show that our RL approach has good convergence, mitigating

the curse of dimensionality. Besides, the scheduling policy

learned by reinforcement learning has low, stable overhead

and high performance.

The rest of this paper is organized as follows. In section II,

we introduce the system model as well as some concepts about

reinforcement learning. Section III proposes the reinforcement

learning architecture in detail. In section IV, we conduct some

experiments to demonstrate the performance of the proposed

approach. In section V, a use case is presented. In section

VI, we review some related works. Summary, discussion, and

future work will be given in section VII.

II. PRELIMINARIES

A. System Model

The system considered in this paper has M identical pro-

cessors, i.e., P = {P1, P2, ..., PM}, and schedules a set of N
real-time tasks, i.e., T = {T1, T2, ..., TN}. Since we focus on

designing a scheduler for aperiodic tasks, we only consider

individual task instances, i.e., jobs. An active job is a task

instance that has been released but has not been completed.

The active job set τ = {τ1, τ2, ..., τn} consists of all the active

jobs. Each job τi is associated with the following parameters:

arrival time Ai; execution time Ci ≥ 0; relative deadline

Di > Ci. The absolute deadline of τi is di = Ai + Di. At

time t, the remaining execution time of τi, denoted by ci(t),
is defined as the execution time of τi minus the cumulative

execution time that τi has consumed by t. τi is completed

when ci(t) = 0. The completion time of τi is denoted by fi.
Hence, ci(t) = 0 if t ≥ fi. A job τj misses its deadline when

t > di. The parameters of different jobs are independent.

Different jobs do not have precedence relations and do not

share resources except the processor. The tasks are indepen-

dent, i.e., a job’s arrival of a task will not be affected by other

tasks. Without loss of generality, we assume that each task

releases at most one new job at any time instant. It should

be noted that multiple instances of a single task may exist at

some point. One can easily extend this paper’s work to many

other systems, which will be discussed in the next section.

B. Reinforcement Learning

Reinforcement learning is a separate branch of machine

learning in which a policy learns to take optimal actions

in an environment (either the real world or a simulation)

to maximize a given reward function. During the learning

process, the agent interacts with an environment by perceiving

states, taking actions, and obtaining rewards [15], as shown in

Fig.1. RL problems can be reformulated as a Markov Decision

Process (MDP). The MDP relies on the Markov assumption,

meaning that the next state st+1 depends only on the current

state st and is conditionally independent of the past.

Fig. 1. In Reinforcement learning, an agent interacts with the environment.

MDP [16] consists of a set of states S , a set of actions A,

a transition system P : S × A �→ S , and a reward function

R : S �→ R. At each discrete decision epoch t, a controller

observes the current MDP state st and selects an action at.
The MDP then makes a transition to state st+1 distributed

according to P (st+1|st, at) and incurs reward r(st+1). rt =
r(st, at) = Est+1∼P (st,at)[r(st+1)]

A solution to an MDP is a policy which is a state-to-

action mapping. The stochastic policy a probability distri-

bution of action and the deterministic policy is an unique

mapping from state to action π(s) = a. The value function

of a policy is a prediction of the expected, accumulative,

future reward Rt =
∑∞

k=t rk, measuring policy quality.

The future reward is often discounted by γ, i.e., Rt =∑∞
k=t γ

k−trk. The state value function V π(s) = E[Rt|st = s]
is the expected return for following policy π from state

s. V π(s) decomposes into the Bellman equation: V π(s) =∑
a π(a|s)

∑
s′,r p(s

′, r|s, a)[r + γV π(s′)]. An optimal state

value function V ∗(s) = maxπV
π(s) = maxaQ

∗(s, a) is

the maximum state value achievable by any policy for state

s. v∗(s) decomposes into the Bellman equation: V ∗(s) =
maxa

∑
s′,r p(s

′, r|s, a)[r + γV∗(s′)]. The action value func-

tion Qπ(s, a) = E[Rt|st = s, at = a] is the expected

return for selecting action a in state s and then following

policy π. Qπ(s, a) decomposes into the Bellman equation:

Qπ(s, a) =
∑

s′,r p(s
′, r|s, a)[r + γ

∑
a π(a

′|s′)Qπ(s
′, a′)].

An optimal action value function Q∗(s, a) = maxπQ
π(s, a) is
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the maximum action value achievable by any policy for state s

and action a. Q∗(s, a) decomposes into the Bellman equation:

Q∗(s, a) =
∑

s′,r p(s
′, r|s, a)[r + γmaxa′Q∗(s′, a′)].

Fig. 2. A feedforward deep neural network or multilayer perceptron consists
of an input layer, an output layer, and N hidden layers. Each layer contains
several neurons and there are connections between neurons in each layer.

Since the goal of an agent is to maximize cumulative

reward, one approach is to learn the state value function that

can predict the reward for a given state, V π(s), and then

take the action which will bring the agent into a state that

obtains the highest reward. However, in recent years, a more

common approach is to use policy gradient methods, which

seek to directly learn the policy π(s) that predicts the optimal

action given the current state. Popular policy gradient methods

include A3C [17], DPG [18], and PPO [19].

Deterministic policy gradients (DPG) [18] algorithm ex-

tends the policy gradients algorithm to deterministic policies

πθ : S �→ A. In particular, under certain conditions we can

write the gradient of the objective J(θ) = Es∼ρπ [r(s, a)] as:

∇θJ(θ) = Es∼ρπ [∇θπθ(s)∇aQ
π(s, a)|a=πθ(s)], (1)

ρπ is the state distribution under π. Since this theorem relies on

∇aQ
π(s, a), it requires the action space (and thus the policy)

be continuous.

We obtain deep reinforcement learning methods when we

use deep neural networks to approximate any of the following

components of reinforcement learning: value function, V (s, θ)
or Q(s, a; θ), policy π(a|s; θ), and model (state transition

function and reward function). Here, the parameters are the

weights and biases in deep neural networks. A feedforward

deep neural network (NN) or multilayer perception (MLP)

maps a set of input values to output values with a mathematical

function formed by composing many simpler functions at each

layer. After computations flow forward from input to output, at

the output layer and each hidden layer, we can compute error

derivatives backward and backpropagation gradients towards

the input layer so that weights can be updated to optimize

some loss function.

Deep deterministic policy gradients (DDPG) [20] is a vari-

ant of DPG where the policy π and critic Qπ are approximated

with deep neural networks. DDPG is an off-policy algorithm,

it samples trajectories from a replay buffer of experiences that

are stored throughout training.

∇θJ(θ) = Es∼D[∇θπθ(a|s)∇aQ
π(s, a)|a=πθ(s)], (2)

where D is the replay buffer. The objective of critic is:

L(θQ) = Es,a,r,s′∼D[(y −Q(s, a|θQ))2]
where y = r + γQ′(s′, π′(s′|θπ′

)|θQ′
) (3)

DDPG also makes use of the target network, in which Q′ is the

target Q function and π′ is the target policy. The parameters of

target networks are periodically updated with the most recent

θ, which helps stabilize learning.

There are some important applications that involve interac-

tion between multiple agents, where emergent behavior and

complexity arise from agents co-evolving together. Markov

game (MG) is a multi-agent extension of the MDP [21]. A

Markov game for N agents is defined by a set of states S
describing the possible configurations of all agents, a set of

actions A1, ..., AN and a set of observations O1, ..., ON for

each agent. Each agent i uses a policy πθi to select action,

which produces the next state according to the state transition

function P : S ×A1 × ...×AN �→ S . Each agent i receives a

private reward ri as well as a observation correlated with the

state Oi : S �→ Oi [22]. In some environments, there are only

a global reward for all agents.

Directly applying single-agent reinforcement learning algo-

rithms to the multi-agent setting by treating other agents as

part of the environment is problematic as the environment

appears non-stationary from a particular agent’s view, violating

Markov assumptions required for convergence. Particularly,

this non-stationary issue is more severe in the case of deep

reinforcement learning with neural networks as function ap-

proximators [23]. The extension of DDPG in the multi-agent

setting is Multi-agent DDPG (MADDPG) [24]. The core idea

of MADDPG is to train a centralized Q function for each agent

which conditions on global state and actions of all agents, to

alleviate the non-stationary problem and stabilize training. The

gradient for agent i is:

∇θiJ(θi) = Es,a∼D[∇θiπi∇aiQπ
i (s, a

1, ..., aN )|ai=πθi
(oi)],

(4)

Here Qπ
i (s, a

1, ..., aN ) is a centralized action-value function

that takes as input the actions of all agents a1, ..., aN , in ad-

dition to some state information s (e.g, s = (o1, ..., oN )). Let

s′ denote the next state from s after taking actions a1, ..., aN .

The centralized action-value function Qπ
i is updated by:

L(θi) = Es,a,r,s′ [(Q
π
i (s, a

1, ..., aN )− y)2],

y = ri + γQπ′
i (s′, a1′, ..., aN ′)|aj′=πj′(oj), (5)

where π′ = {πθ′
1
, ..., πθ′

N
} is the set of target policies.

III. REINFORCEMENT LEARNING FOR REAL-TIME

SCHEDULING

To show how RL can be applied to solve the real-time

scheduling problem, we first start with the policy architecture
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design. Then, we formulate the real-time scheduling problem

as MG. At last, we present how to learn real-time scheduling

policy in detail. Specifically, we propose multi-agent self-

cooperative learning to solve the credit assignment problem.

A. Policy Architecture Design

The basic purpose of a real-time scheduler is to find

an optimal order to execute the active jobs/tasks. Inspiring

by most heuristic schedulers, we intuitively design the RL

policy’s input as a sequence of job parameters and output as a

sequence of corresponding job priorities p1, p2, ..., pn. In this

setup, we use RL to find a mapping

(τ1, τ2, ..., τn) −→ (p1, p2, ..., pn) (6)

in each time step to maximize the success ratio of the

scheduling process.

In order to deal with the variable-length sequence, the most

straightforward way is using the recurrent neural network

(RNN) [25] and encoder-decoder architectures [26] as policy.

The encoder-decoder has been widely used in the neural

language process [27], which maps a variable-length sequence

input with output. Since most heuristic schedulers, such as LSF

and EDF, derive the priority from the corresponding job’s local

parameters, another solution is using a NN to represent the

policy and derive the priority for each job separately. Besides,

some global information, such as the minimum deadline of

all active jobs, can be appended to the input to explore more

efficient policies.

Fig. 3. The recurrent neural network and encoder-decoder architecture with
one hidden layer. The circles represent neurons and the squares represent input
and output. Encoder folds the data to retain information and decoder does the
final task.

For real-time systems, the scheduling overhead is critical

and should be much less than the tasks’ execution times. Poli-

cies with lower overhead tend to be more practical. Thus, we

first compare the floating-point operations (FLOPs) between

the encoder-decoder and NN policy, assuming that the input

size and output size are I and O, respectively. For simplicity

and fairness, we suppose that the number of the hidden layer

is one, and the neurons of the hidden layers H are identical.

The FLOPs of the encoder-decoder for inferring priorities of

J jobs are:

FLOPs(encoder − decoder)

= (I ∗H +H ∗H +H) ∗ J ∗ 2 + (H ∗O) ∗ J
= (2 ∗ I ∗H + 2 ∗H ∗H +H ∗O + 2 ∗H) ∗ J (7)

Moreover, the FLOPs of the NN for inferring priorities of J
jobs are:

FLOPs(NN) = (I ∗H +H ∗O +H) ∗ J (8)

As we can see, the encoder-decoder policy has nearly three

times the FLOPs of NN. Moreover, as the number of layers

increases, the ratio grows faster. Meanwhile, NN policies

have higher parallelism because they compute the priority

for each job separately, and encoder-decoder policies must

compute each neuron’s output in sequence, as shown in Fig.3.

If multiple processors can be used to compute priorities, the

overhead will be greatly decreased. Hence, the overhead of

encoder-decoder policies is much higher than NN policies.

Since the MLP policy only uses the local parameter of one

active job to determine the priority, one key drawback is that

it cannot automatically extract the interrelation between all

active jobs to help make decisions. The best way to make up

is using some global information of all active jobs as input.

Moreover, although RNN has relatively good robustness to

input orders for sequences with small lengths, e.g., dozens, it is

also hard to scale to hundreds of inputs, which is a regular size

for job sets in real-time systems. Considering all these factors,

we select the second solution, i.e., using the NN to represent

the policy. The policy’s input consists of the parameters of a

particular job τi as well as some global information that can

represent the job set. Empirically, minimum deadline, mean

deadline, mean execution time, the maximum execution time

of all active jobs, and the number of active jobs and processors

are included. The RL policy is only invoked when a new job

arrives to ensure the priority inference does not take up too

much processor time.

For real-time scheduling, a deterministic policy is more

suitable for priority inference than stochastic policy because it

is the order of jobs’ priorities that affects which jobs will be

executed. Employing a stochastic policy will break the optimal

order of priorities and make it unpredictable. Thus, the output

of the policy NN is set to the priority of a corresponding job.

Since there are no explicit criteria for what NN structure

should be used for what kind of application, the number of

layers and the number of neurons in each layer of the policy

NN for RL are often determined empirically. Recent work

has proposed the neural architecture search (NAS) [28], which

makes use of RL to automatically search the best NN structure

that maximizes the accuracy for supervised learning. However,

due to the high cost of online learning, NAS is difficult to use

in RL tasks. The policy structure mainly affects the overhead

of executing the policy, so lightweight NNs with shallow layers

and few neurons are more suitable for real-time systems. On

the other hand, lightweight NNs tend to be easier to train due

to their fewer parameters. In this paper, we empirically design

a lightweight NN structure with one hidden layer and eight

neurons as the policy. Furthermore, the rectified linear unit

(ReLU) [29] is applied for each hidden layer as the nonlinear

activation function. The ReLU is expressed as ReLU(x) =
max(0, x), which has the lowest computational complexity

among all activation functions.
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B. MG Formulation

We intuitively regard each job as an agent because they

follow a decentralized NN policy to determine the priority,

respectively. Then we reformulate the real-time scheduling

decision process as an MG. Each system state consists of n

vectors, st = (s1t , ..., s
n
t ) where each component sit is the state

of the corresponding agent, i.e., active job τi. An agent’s state

is parameters of τi, such as remaining execution time and

absolute deadline. The action of each agent is its priority. For

each step, the transition system determines which jobs will

be executed by their priorities and the number of processors.

The remaining execution time of job i will be decreased one

time unit if executed: ci(t+ 1) = ci(t)− 1. The job i will be

removed from the job set if ci(t) = 0 or di = t.

(a) Neither completed jobs nor released jobs at time t+ 1. c1(t+ 1) =
c1(t), c2(t + 1) = c2(t), c3(t + 1) = c3(t) − 1, c4(t + 1) = c4(t) −
1.ci(t+ 1) > 0 and di > t+ 1 for each job i in the job set at time t+ 1.

(b) A new job will arrive if the arrival condition is met. c1(t + 1) =
c1(t), c2(t + 1) = c2(t), c3(t + 1) = c3(t) − 1, c4(t + 1) = c4(t) − 1.
ci(t+ 1) > 0 and di > t+ 1 for each job i in the job set at time t+ 1.

(c) A current job misses or meets its deadline. It will be removed from the
job set. If job4 misses its deadline, d4 = t+1 and c4(t) > 1. If job4 meets
its deadline, c4(t) = 1. c1(t+ 1) = c1(t), c2(t+ 1) = c2(t), c3(t+ 1) =
c3(t)− 1. ci(t+1) > 0 and di > t+1 for each job i in the job set at time
t+ 1.

Fig. 4. MG transition of the real-time scheduling decision process.

We demonstrate the transitions of this MG by the examples

given in Fig.4. The scheduling behavior of a multiprocessor

system having two processors is shown in this figure. Three

cases are depending on whether jobs are completed or new

jobs arrive at time t + 1. If there are no jobs completed or

released at t+1, the two jobs having the highest priorities will

be executed, as shown in Fig.4 (a). Meanwhile, the remaining

execution time of job three and job four is reduced by a time

step. Fig.4(b) shows a special case that a new job instance is

released. In the above cases, all jobs’ deadlines are later than

t+ 1, and the remaining execution times of job three and job

four are larger than 1. In the third case, there is a certain job

completed. The job i meets the deadline if ci(t + 1) = 0, or

it misses the deadline if ci(t + 1) > 0 and di = t + 1. The

completed jobs will be removed from the job set at time t+1,

as Fig.4(c) shown.

The goal of reinforcement learning is to maximize the

expectation of cumulative rewards E(R0). Therefore, the per-

formance of learned policy depends largely on the reward

function. Instead of explicitly designing a reward function

by domain knowledge, we derive the reward function by

objective function transformation from real-time scheduling to

reinforcement learning to ensure the performance of learned

policies. The goal of real-time scheduling is to schedule jobs to

make as many jobs as possible meet their deadlines. Therefore,

an ideal learning algorithm should learn a policy π that can

maximize the expectation of the success ratio. Suppose that

SJ is the set of jobs that meet their deadline, and FJ is the

set of jobs that miss their deadlines. The total number of jobs

that meet their deadlines is |SJ |, and the total number of jobs

that miss their deadlines is |FJ |. TS is all possible initial task

sets for a specific real-time system. The objective of real-time

scheduling is to find a scheduling policy π that

max
π

ETS(
|SJ |

|SJ |+ |FJ | ) (9)

The above objective is equivalent to maximize |SJ | and

minimize |FJ | simultaneously, which can be rewritten as:

max
π

ETS(|SJ | − |FJ |) (10)

We discretize the scheduling process by processor time unit,

i.e., a discrete and indivisible unit of time determined for

a specific processor. For any time t, let |SJt| denotes the

number of jobs whose completion times equal to t that meet

their deadlines, and |FJt| denotes the number of jobs whose

absolute deadlines are t that miss their deadlines. The objective

can be rewritten by |SJt| and |FJt|:
max
π

ETS(
∑

t

|SJt| − |FJt|) (11)

To ensure the RL policy can maximize the success ratio, we

derive a reward function of each time instant as below:

rt = |SJt| − |FJt| (12)

Then, the objective function of real-time scheduling is trans-

formed to the objective function of reinforcement learning, as

shown below:

max
π

ETS(
∑

t

rt) (13)

Hence, the objective function of real-time scheduling is trans-

formed to the objective function of reinforcement learning

through the reward function. With this reward function, rein-

forcement learning can generate high-performance scheduling

policies that maximize the success ratio among the possible

initial task sets for a specific real-time system.
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Fig. 5. The framework of our approach. The RL scheduler obtains the
experiences by interacting with a real-time system. It stores the experience in
a replay buffer and learns from the sampled data. Scheduling policy will be
improved through continuous interaction and learning.

C. The framework of Learning Scheduling Policy

The framework shows the online learning process for

scheduling policy. As shown in Fig.5, the environment is a

real-time system with M processors and N tasks. There is

also an active job set with n jobs. Similar to global schedulers,

the RL scheduler/policy generates the priority for all active

jobs and selects M jobs with higher priorities to execute.

The scheduling experience is stored in the form of 4 tuples

(st, at, rt, st+1) in the replay buffer. We extend the actor-

critic architecture to learn policy and train double NNs to

approximate policy and Q function. The learning process can

be divided into two steps: collecting samples and updating the

neural networks’ parameters.

(1) Collect samples: During system runtime, the RL sched-

uler observes state information from the environment at each

time. And then, the policy neural network is invoked for

priority inference. As mentioned before, the action of the RL

scheduler is priorities of current jobs. After receiving an action

from the RL scheduler, the environment selects the top M jobs

with the highest priority to execute. After executing, the RL

scheduler receives the next state and reward from the envi-

ronment. The above process is called a complete interaction

between the agents and the environment. Experiences from

each interaction will be stored in a replay buffer. There is

usually a maximum size of replay buffer. When the buffer is

full, old experiences will be discarded.

(2) Update network: Agents learn from the experiences

stored in the replay buffer. Each time, a batch of experiences

is sampled from the replay buffer and used to train policy

neural networks and value neural networks. The value NN is

often refined by mean square error (MSE) as the loss function,

firstly.

MSE =
1

M

M∑

m=1

(ym − ŷm)2 (14)

And then, the parameters of the policy neural network

is updated in order to maximize the objective J(θ) =
Es∼ρπ,a∼πθ

[
∑

r(s, a)] by taking steps in the direction of

∇θJ(θ). We will discuss how to learn the policy in detail

in the following subsection.

The above two steps are independent and can be executed

in parallel.

Since periodic tasks can be regarded as aperiodic tasks with

a fixed interval, the framework is also suitable for periodic

tasks or uniprocessor systems. Furthermore, it is noted that

our reinforcement learning framework has good potential to

be extended to real-time systems with various characteristics.

For example, if the systems that execute real-time tasks having

weights or values, a weighted reward function could be used

to learn scheduling policy. For real-time tasks with precedence

constraint, usually represented by a directed acyclic graph, the

graph neural network could be employed to compute priorities

for such task sets and train it by reinforcement learning

approach.

D. Self-cooperative Learning

In our multi-agent setting, there are n homogeneous agents

cooperating to get the job done in the environment. At each

step t, they obtain a global reward rt as a function of the state

and agents’ action rt = E[r(st, a
1
t , ..., a

n
t )]. These n agents

cooperate with each other to maximize the joint cumulative

expected return E[R0]. So this is a cooperative game for the

job agents [30].

In most multi-agent environments, the number of agents

is often fixed. However, the number of jobs keeps changing

in the real-time system. The input of centralized Q function

is a set of jobs’ states and actions (s1, a1, s2, a2, ..., sn, an)
which is a variable-length sequence. Besides, the agents are

homogeneous, so that the centralized Q-value should be the

same no matter what input order is. In other words, the

centralized Q function must be invariant to input permutation,

as shown in formula (15):

Q(..., si, ai, ..., sk, ak, ...) = Q(..., sk, ak, ..., si, ai, ...) (15)

In order to meet both of the above requirements, we use the

symmetric function to aggregate the information from each

point. The symmetric function takes n vectors as input and

outputs a new vector invariant to the input order. For example,

+ and ∗ operators are symmetric binary functions [31]. We

propose Self-Cooperative Learning (SCL) in this paper. The

main idea of SCL is to approximate a centralized Q function

by applying a symmetric function on decentralized Q function,

Q̇ for each agent, and the centralized Q function is defined

as:

Q(s1, a1, ..., sn, an) = g(Q̇(s1, a1), ..., Q̇(sn, an)) (16)
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Algorithm 1 Learning scheduling policy by self-cooperative reinforcement learning

1: Randomly initialize critic networks Q(s, a|θQ) and actor network π(s|θπ) with weight θQ and θπ as well as corresponding

target networks.

2: Initialize replay buffer B
3: Initialize a Gaussian random process N and a exploration episode EP for action exploration

4: for episode = 1, MAX EPISODE do
5: Reset environment

6: Randomly generate a task set

7: Receive initial observation state s0
8: for t = 1 ,MAX STEP do
9: if episode < EXPLORE EPISODE then

10: Sample a random action at ∼ N for the job set

11: else
12: Select an action at = π(st) from current policy for the job set

13: end if
14: Execute action at and observe reward rt and new state st+1

15: Store experience (st, at, rt, st+1) in B
16: Sample a batch of experiences D from B
17: Set y = r + γ 1

N

∑
i Q̇

′(si′, π′(si′|θπ′
)|θQ′

)

18: Update critic by minimizing the loss:L(θQ) = Es,a,r,s′∼D[(y − 1
N

∑
i Q̇(si, ai|θQ))2]

19: Update the actor policy using the sampled gradient:

∇θπJ(θπ) = Es∼D[ 1N
∑

i ∇θππ(si|θπ)∇π(si|θπ)Q̇(si, π(si|θπ)|θQ)]
20: Update the target networks:

θQ
′ ← τθQ + (1− τ)θQ

′

θπ
′ ← τθπ + (1− τ)θπ

′

21: end for
22: end for

The decentralized Q function, Q̇ is state-action value function

for a single agent in the environment. Although we regard the

scheduling process as a multi-agent setting, agents essentially

take the same policy π. In our setting, both the centralized

Q function and decentralized Q function are only w.r.t. π.

Therefore, it is reasonable to represent the centralized Q
function by decentralized Q function in our setting.

Since the agents only receive a global reward from the

environment and the global reward is incurred by all agents’

actions, we cannot directly train the decentralized Q function

by global reward. In multi-agent cooperative tasks, it is hard

to assign the global reward to each agent impartially. That is

the credit assignment problem.

To overcome the credit assignment problem, we try to

express the centralized and decentralized Q function by the

global reward rather than the local reward. Suppose rit is the

local reward of agent i at time t, we have

rt = Ei[r
i
t] (17)

The decentralized Q function for agent i decomposes into the

Bellman equation (t is omitted):

Q̇(si, ai) = ri + γEsi′∼P [Q̇
′(si′, π′(si′))] (18)

Our approach also makes use of a target network, as DDPG

and DQN. Sum over all the decentralized Q functions at the

time t and then divide by the number of jobs, we have:

Q(s, a) =
1

N

∑

i

Q̇(si, ai)

= r + γ
1

N
Esi′∼P [

∑

i

Q̇′(si′, π′(si′))] (19)

Thus, decentralized Q function can be represented by global

reward r. And we approximate Q̇(s, a) by a NN and g by a

mean pooling function which is invariant to input permutation.

The parameter θQ for value neural network is updated through

sampling a batch of experiences D from the replay buffer. The

loss function is:

L(θQ) = Es,a,r,s′∼D[(y − 1

N

∑

i

Q̇(si, ai|θQ))2],

where y = r + γ
1

N

∑

i

Q̇′(si′, π′(si′|θπ′
)|θQ′

), (20)

The gradient of loss function is:

∇θQL(θQ) = Es,a,r,s′∼D[(y − 1

N

∑

i

∇θQQ̇(si, ai|θQ))2],
(21)

The objective of policy neural network with parameter θπ is:

J(θπ) = Es∼D[
1

N

∑

i

Q̇(si, π(si|θπ)|θQ)], (22)
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Gradient of objective can be written as:

∇θπJ(θπ) = Es∼D[
1

N

∑

i

∇θππ(si|θπ)∇π(si|θπ)

Q̇(si, π(si|θπ)|θQ)], (23)

Moreover, instead of directly copying weights, target networks

use ”soft” updates [32]. A copy of the networks for both

the actor and critic are created, denoted by Q′(s, a) and

π′(s, a) respectively, but their weights are updated by slowly

tracking the learned network, as shown in (24). The use of

target networks helps improve the stability of the learning by

constraining the weights to change slowly.

θQ
′ ← τθQ + (1− τ)θQ

′

θπ
′ ← τθπ + (1− τ)θπ

′
(24)

The complete learning algorithm is shown in algorithm 1. In

order to accelerate training, We randomly perform actions to

collect samples in the first few episodes.

IV. EVALUATION

In this section, we evaluate the performance of the proposed

RL approach using randomly generated task instance sets.

Specifically, we first train RL policies using self-cooperative

learning under different settings and then evaluate RL policies

and baselines with different metrics.

A. Simulation Setup and Metrics

Compared with CPU, GPU is more suitable for neural

networks in training and inference. However, most real-time

systems do not have any GPU resources. Hence, all schedulers

only use the CPU to make scheduling decisions in the experi-

ments. The platform used to collect the experimental data is a

Windows desktop with Intel Core i7-6700 3.40GHz CPU with

eight cores, 16GB of RAM.

More than 10 thousand randomly generated task sets are

used for training and evaluating the scheduling policy. Specif-

ically, we generate aperiodic task loads with exponentially

distributed arrivals, exponentially distributed execution times,

and uniformly distributed deadlines. The rate parameter for the

exponential arrival interval varies from 12 to 25 to help gen-

erate different workloads. This rate parameter is the expected

value of the job arrival interval. The relative deadlines follow

uniform distribution U [5, 50]. For each randomly generated

task Ti, its execution time, Ci follows exponential distributions

whose rate parameter is set according to task Ti’s granularity.

Here Ti’s granularity is defined as the ratio of its execution

time and relative deadline, i.e., Ci/Di, which vary from 0.1 to

0.6. The number of tasks N is five times the processor number

M, and each task has at least 20 job instances to make sure

that each experiment is carried for a sufficiently long time. The

preemption and migration overhead is ignored if not explicitly

declared.

We use the success ratio to evaluate the performance of

learned scheduling policies and baseline heuristics. The suc-

cess ratio is defined as the percentage of jobs that meet their

deadlines. We also evaluate the execution overhead of the RL

scheduler and baseline scheduler, using the time complexity

and time overhead as metrics.

B. Training Policies

To speed up training, we carry our training experiments

on a Ubuntu 16.04 server with Intel Xeon E7-4809 2.10GHz

CPU, 2 NVIDIA Tesla P100 GPU. The use of GPU is

to accelerate training. PyTorch [14], an open-source Python

machine learning library, is used for constructing and updating

neural networks. The hyper-parameters for training are shown

in TABLE I.

TABLE I
HYPER-PARAMETERS

Parameter Value

Memory capacity of replay buffer 1e6
Batch size 100
γ 0.95
τ 1e-3
Explore episodes 30
Learning rate for policy NN 1e-3
Learning rate for value NN 1e-2
Number of hidden layers of value NN 2
Number of neurons in each layer of the value NN 8, 4

The task instance sets for training are randomly generated,

following the pattern described in the previous subsection.

We train the scheduling policy based on Algorithm1 until

convergence. (at least 200 episodes).

C. Success Ratio Evaluation

In this subsection, we investigate the performance of learned

scheduling policy in terms of success ratio at first. Specifically,

we compare the success ratio between RL policy with three

heuristic scheduling policies, G-EDF, EDF-BF, and LSF. For

the simulation data to be presented, each data point on each

curve in the figures is the average of 50 experiments, each

carried out for a sufficiently long time (more than 1000 job

arrivals). For fairness, in each experiment, the same random

job sets are used to evaluate different scheduling policies.

We first evaluate the success ratio over different loads and

task granularities. The load is defined as the sum of actual

computation times of all the arriving jobs over the time interval

during which they arrive.

As seen from Fig.6, our learned policy has the best overall

success ratio comparing with the baselines. These simulation

data are collected for different incoming loads. The above

result shows that our RL approach makes policies converge

to the high success ratio. At low loads, as expected, nearly

all jobs meet their deadlines no matter which policy is used.

As the load increases, more and more jobs miss their dead-

lines, the success ratios of all policies decrease as expected.

Although heuristics have a high success ratio in low loads,

their performance decreases rapidly when the load exceeds 0.9.

The success ratio of RL policy decreases much more slowly
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Fig. 6. Success ratio under different system loads for reinforcement learning
policy and heuristic policies. The granularity is less than 0.4. N = 40, M = 8

and consistently obtains high success ratios for different loads.

Only the success ratio of RL policy remains above 80% when

the load increases to 1.3.

Generally, it is hard to schedule task sets with large granu-

larity tasks. To further verify the robustness of the RL method,

we test some extraordinary task sets that contain both small

granularity tasks and large granularity tasks. In these cases,

the granularities of most tasks are more than 0.4. From Fig.7,

one can see that RL policy achieves better overall performance

than other heuristics. Compared to the performance under low

task granularity, the performance gaps between RL policy and

other policies grow more rapidly as the load increases. The

success ratio of RL policy is 5% ∼ 10% higher than the best

heuristic policy when the load exceeds 0.9.

Fig. 7. Success ratio under different system loads for reinforcement learning
policy and heuristic policies. The granularity of tasks is large than 0.4. N =
40, M = 8

Then, we evaluate the success ratio over different numbers

of processors, as shown in Fig.8. For this set of simulations,

the granularity of tasks is less than 0.4, and the system

loads are about 1. As the number of processors increases, the

success ratio gets closer to 100. These results show that our

RL approach can learn sound policies for real-time systems

with different numbers of processors, system loads, or task

granularity.

Fig. 8. Success ratio under different number of processors for reinforcement
learning policy and heuristic policies. The average granularity of all tasks is
0.3.

In the real world, the preemption overhead is ubiquitous.

Some real-time systems may have a non-negligible preemption

overhead. To verify the applicability of the RL approach for

such systems, we test the RL approach on a specific system

with a time step preemption overhead. Besides, a new feature

that indicates whether the job is running on a processor must

be added to NN’s input as a crucial characteristic. In Fig.9,

we show the learning process of the RL policy and use

GEDF to schedule the same task sets in each episode as the

baseline. During the learning process, the success ratio of the

RL policy increases gradually and exceeds the baseline in

about 80 episodes. Experimentally, the proposed RL approach

has good convergence and scalability for real-time systems

with preemption overhead. For other real-time systems with

various characteristics, the RL approach can also learn high-

performance policy online.

Fig. 9. Learning process on a system with one time step preemption overhead.

D. Overhead Evaluation
Another important consideration in evaluating scheduling

policies is their actual runtime overhead. Generally, it is hard
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to measure the actual runtime overhead for baseline heuristics

because they only use simple formulas for computing pri-

orities. So, we analyzed and compared the time complexity

and FLOPs for RL schedulers and baseline heuristics. Simple

heuristic schedulers compute the priority for all jobs and do

a binary search or sort to prioritize all active jobs. The time

complexity could be O(logN) for GEDF and O(N) for LSF,

where N is the number of active jobs. In the RL method, the

scheduler computes the priorities of all jobs by invoking the

policy neural network N times and then sort the priorities. The

time complexity of RL schedulers could be O(N), which is

not lower than simple heuristics. Moreover, baseline heuristics

always compute priorities based on a simple formula, e.g.,

Di −Ci in LSF. Their FLOPs for each job are approximately

one. However, RL schedulers use policy NN, a relatively

complicated method to compute priorities. The FLOPs of RL

schedulers shown in section III.A are larger than baselines.

Although baseline schedulers have relatively lower over-

heads than RL schedulers, RL policies’ overheads are also

tolerable in many computationally demanding tasks (applica-

tions). On the other hand, their overheads could be further

reduced by using simpler approximators or parallel computing.

To demonstrate the parallelism of RL schedulers, we then

test the actual overhead time of RL policies under different

numbers of jobs in the multiprocessor system. As shown in

Fig.10, the learned scheduling policy’s total overhead stays at a

relatively low, stable level. Specifically, the average overheads

only increase 50 microseconds as the job number increase

from 10 to 500. The overheads do not increase linearly

because the policy neural network is computed in parallel

by a multiprocessor. Furthermore, some applications would

prefer high-performance RL schedulers rather than baseline

schedulers having lower overheads. For example, in avionics

and automotive control applications, jobs usually require hun-

dreds of thousands or millions of cycles to execute. Hence,

RL policies are more suitable for many applications.
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Fig. 10. Minimum, mean and maximum overheads under different number of
jobs. We test 10 thousand different data for each number of jobs in a 8-core
processor system.

In this section, we have verified the effectiveness of multi-

agent self-cooperative learning through simulation results. One

can be readily seen that the multi-agent self- cooperative

learning can learn an acceptable scheduling policy for various

task/system models. The learned scheduling policy has low,

stable overhead and high scheduling performance, making it

strongly desired by real-time multiprocessor systems that deal

with unpredictable frequent task instance arrivals.

V. USE CASE

In this section, we demonstrate how the RL approach

in this paper might be realistically applied. A prospective

application is the Unmanned Vehicle System (UVS), which

attracts significant interest in the critical embedded market.

Supporting advanced UVS functionalities requires real-time

systems capable of performing real-time processing of a mas-

sive amount of diverse data, consistently coming from a score

of on-board sensors, such as LiDARs and IMU [33]. The real-

time tasks in UVS consist of perception, control, localization,

planning, prediction. An intuitive example is shown in TABLE

II.

TABLE II
AN EXAMPLE OF REAL-TIME TASKS IN UVS

Task Execution Time (ms) Deadline (ms) Period (ms)
Perception 150 300 500
Control 8 20 Aperiodic
Localization 10 50 Aperiodic
Planning 200 500 500
Prediction 150 400 1000

First, to learn a high-performance scheduling policy, one

should select an approximator with appropriate complexity as

the scheduling policy based on the system’s computational

resources. The input to the policy must include all task

characteristics that can help prioritize. Then, the RL algorithm

runs the scheduler to collect samples during system runtime

and updates the policy using the samples until convergence.

Since the RL approach is learning from real systems, it

must lead to scheduling policies that are stronger than simple

heuristics. Users can also try different hyper-parameters and

approximators, then select the best policy. If the system

changes in the future, users can use RL again to improve the

policy.

VI. RELATED WORK

Glaubius et.al. [34] has represented the real-time scheduling

decision model on the open real-time system as an MDP,

and suitable scheduling policies are learned online using

reinforcement learning [35]. In open real-time systems, jobs

are released periodically. Whenever a job is granted the

resource, it occupies the resource for a finite and bounded

subsequent duration. The duration for which a job occupies

the resource may vary from run to run of the job released

by the same task, but overall obeys a known independent and

bounded distribution over any reasonably large sample of runs

of that task. The objective of scheduling is to achieve near-

optimal schedules to maintain relative utilization of shared
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resources among tasks near a user-specified target level. Since

their method is based on a traditional non-deep reinforcement

learning algorithm, it has poor convergence and only computes

static scheduling forms for given tasks. Hence, it is not easy to

extend their work to learn a robust dynamic scheduling policy

for multiprocessor systems executing aperiodic tasks.

VII. SUMMARY, DISCUSSION AND FUTURE WORK

The traditional design pattern of real-time scheduling policy

is in a dilemma. In this paper, we investigate a new real-

time scheduling framework based on reinforcement learning.

We formulate the real-time decision model as MG and derive

the reward function from the objective function of real-

time scheduling. Specifically, we introduce multi-agent self-

cooperative learning, a novel reinforcement learning approach

that solves the credit assignment problem and mitigates the

curse of dimensionality. The main idea of self-cooperative

learning is to use the symmetric function to aggregate each

job’s value function to approximate the centralized value

function. We implement a real-time scheduling simulator and

the proposed reinforcement learning algorithm. Simulation

results show that the proposed RL approach can train a

well-performance scheduler. Since the learned RL policy has

low, stable overhead and high performance, it would also

be strongly desired by the real-time systems that deal with

unpredictable frequently-changing job arrivals. The safety of

our approach can be guaranteed by equipping an admission

controller that avoids online deadline misses.

In the future, we will optimize our method in generaliza-

tion and convergence by using other learning algorithms or

function approximators. As another follow-up work, we intend

to extend our work to help the offline design of hard real-

time multiprocessor systems through automatically learning

scheduling policy and testing system safety (feasibility). We

also intend to explore learning scheduling policies for real-

time systems with complex characteristics. In this paper, we

have only considered using fixed structure models for learning

a high-performance policy. We will explore how to learn both

optimal and low-overhead policies simultaneously.
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