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Abstract—Designing scheduling policies for multiprocessor
real-time systems is challenging since the multiprocessor schedul-
ing problem is NP-complete. The existing heuristics are cus-
tomized policies that may achieve poor performance under some
specific task loads. Thus, a new design pattern is needed to
make the multiprocessor scheduling policies perform well under
various task loads. In this paper, we investigate a new real-
time scheduling policy based on reinforcement learning. For any
given real-time task set, our policy can automatically derive
a high performance by online learning. Specifically, we model
the real-time scheduling process as a multi-agent cooperative
game and propose multi-agent self-cooperative learning that
overcomes the curse of dimensionality and credit assignment
problems. Simulation results show that our approach can learn
high-performance policies for various task/system models.

Index Terms—real-time scheduling, reinforcement learning,
multiprocessor system, deep neural network

I. INTRODUCTION

Developing scheduling policies for aperiodic tasks running
in multiprocessor real-time systems is always challenging
work. The multiprocessor scheduling problem is NP-complete
[1], which means that the optimal scheduling policy cannot
be implemented in polynomial time unless P=NP. There-
fore, some heuristic policies have been investigated, such
as GEDF [2], PFair [3]-[5], EDF-BF [6], EDHS [7].etc.
These policies are simple to implement since they determine
priorities directly by task parameters. Only PFair is optimal
for periodic tasks when system utilization is less than the
number of processors [4]. However, the runtime overhead of
PFair is too high from the implementation point of view.
Furthermore, all of the above heuristic policies may achieve
poor performance in real-time systems executing aperiodic
loads. Traditional heuristics are customized by the expert
depending on his domain knowledge. In practice, there are two
significant drawbacks to this traditional design pattern. Firstly,
the complete prior knowledge of task behaviors is unlikely to
be available, so that employing experts to design customized
scheduling policy could be very costly. Secondly, real-time
systems in the real world often violate the assumptions of
the customized scheduling policy. For example, a system may
have non-negligible high preemption overhead or migration
overhead. Therefore, a new design pattern for developing real-
time scheduling policies is urgently needed.

One ideal approach to the above issues is to develop an
“artificial expert’ on real-time scheduling, i.e., implementing
a method that can automatically generate customized policies
for various multiprocessor systems with given system and task
information.

We find that reinforcement learning (RL) is a promising
approach to develop sterling scheduling policies. With the
advent of AlphaGo [8], reinforcement learning has gradually
become a hotspot in the artificial intelligence (Al) research
area. The integration of the deep learning has greatly promoted
successful applications of reinforcement learning in solving
real-world complex applications [9], such as chips design
[10], robotic manipulation [11] and video games [12]. Real-
time scheduling problems have one common key feature with
the above applications, i.e., they are massive search problems
where exhaustive or heuristic-based methods cannot scale. The
considerable success of the above applications has shown that
reinforcement learning is good at solving such massive search
problems. Therefore, we deem that reinforcement learning is
a promising way to develop real-time scheduling policies.

However, using RL to learn real-time scheduling policy is
not trivial work. In most real-time systems, aperiodic tasks
may have more than one active instance in some time steps
so that the number of instances continuously changes during
system runtime. Hence, the number of the system states grows
exponentially with the number of instances, resulting in poor
convergence for RL. This phenomenon is called the curse
of dimensionality [13], which exists extensively in machine
learning. Besides, since real-time systems are sensitive to time
overheads, the learned scheduling policies should have low
overheads, which further increases the designing difficulty of
the policy architecture. Moreover, the reward function design
for RL has a significant influence on the performance of the
learned scheduling policy. Thus, designing a suitable policy
architecture and reward function is also challenging work.

In this paper, we investigate a novel multi-agent deep
reinforcement learning framework to learn real-time schedul-
ing policies having high success ratio for multiprocessor
systems. Our approach keeps computing proper priorities for
task instances, which should be strongly desired by real-time
multiprocessor systems that deal with unpredictable frequent
task instance arrivals. The proposed framework can also be
easily extended to many applications having different system
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models. Our main contributions are summarized as follows:

(1) We formulate the real-time scheduling process as
Markov game and investigate a new real-time scheduling
method based on reinforcement learning, i.e., a deep re-
inforcement learning framework to learn scheduling poli-
cies online, improving the scheduling performance of real-
time multiprocessor systems. Instead of directly designing
heuristics for specific task sets, the proposed reinforcement
learning approach can derive high-performance scheduling
policies through continuously improving the policy online.
This framework can be extended to other real-time systems
with various characteristics.

(2) We propose a multi-agent self-cooperative learning
method, a novel reinforcement learning algorithm that solves
the credit assignment problem in the Markov game. The
proposed method is based on multi-agent actor-critic, and
we also adopt the framework of centralized training with
decentralized execution.

(3) We have implemented the framework as well as a multi-
agent self-cooperative learning algorithm, using Python and
PyTorch [14]. Simulation results for randomly generated loads
show that our RL approach has good convergence, mitigating
the curse of dimensionality. Besides, the scheduling policy
learned by reinforcement learning has low, stable overhead
and high performance.

The rest of this paper is organized as follows. In section II,
we introduce the system model as well as some concepts about
reinforcement learning. Section III proposes the reinforcement
learning architecture in detail. In section IV, we conduct some
experiments to demonstrate the performance of the proposed
approach. In section V, a use case is presented. In section
VI, we review some related works. Summary, discussion, and
future work will be given in section VII.

II. PRELIMINARIES
A. System Model

The system considered in this paper has M identical pro-
cessors, i.e., P = {Py, Ps, ..., Prr}, and schedules a set of N
real-time tasks, i.e., 7' = {T1,T5,...,Tn}. Since we focus on
designing a scheduler for aperiodic tasks, we only consider
individual task instances, i.e., jobs. An active job is a task
instance that has been released but has not been completed.
The active job set 7 = {71, 72, ..., T, } consists of all the active
jobs. Each job 7; is associated with the following parameters:
arrival time A;; execution time C; > 0; relative deadline
D; > (. The absolute deadline of 7; is d; = A; + D;. At
time ¢, the remaining execution time of 7;, denoted by ¢;(¢),
is defined as the execution time of 7; minus the cumulative
execution time that 7; has consumed by ¢. 7; is completed
when ¢;(t) = 0. The completion time of 7; is denoted by f;.
Hence, ¢;(t) = 0if ¢t > f;. A job 7; misses its deadline when
t > d;. The parameters of different jobs are independent.

Different jobs do not have precedence relations and do not
share resources except the processor. The tasks are indepen-
dent, i.e., a job’s arrival of a task will not be affected by other
tasks. Without loss of generality, we assume that each task
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releases at most one new job at any time instant. It should
be noted that multiple instances of a single task may exist at
some point. One can easily extend this paper’s work to many
other systems, which will be discussed in the next section.

B. Reinforcement Learning

Reinforcement learning is a separate branch of machine
learning in which a policy learns to take optimal actions
in an environment (either the real world or a simulation)
to maximize a given reward function. During the learning
process, the agent interacts with an environment by perceiving
states, taking actions, and obtaining rewards [15], as shown in
Fig.1. RL problems can be reformulated as a Markov Decision
Process (MDP). The MDP relies on the Markov assumption,
meaning that the next state s;;; depends only on the current
state s; and is conditionally independent of the past.

Environment

[

ag Tt | St+1

Agent

Fig. 1. In Reinforcement learning, an agent interacts with the environment.

MDP [16] consists of a set of states S, a set of actions A,
a transition system P : S x A — S, and a reward function
R : S — R. At each discrete decision epoch ¢, a controller
observes the current MDP state s; and selects an action a;.
The MDP then makes a transition to state s;4; distributed
according to P(s¢41]|st,at) and incurs reward 7(S¢41). 1t =
T(St-/ at) = E3t+1"‘P(St,(lt)[r(St+l)]

A solution to an MDP is a policy which is a state-to-
action mapping. The stochastic policy a probability distri-
bution of action and the deterministic policy is an unique
mapping from state to action 7(s) = a. The value function
of a policy is a prediction of the expected, accumulative,
future reward R, = Y -, 7, measuring policy quality.
The future reward is often discounted by ~, i.e., R
> e 7" tri. The state value function V7 (s) = E[Ry|s; = ]
is the expected return for following policy 7 from state
s. V7(s) decomposes into the Bellman equation: V7 (s)
Yoamlals) >y . (s r|s,a)[r + V™ (s")]. An optimal state
value function V*(s) max,; V™ (s) mazr,Q*(s,a) is
the maximum state value achievable by any policy for state
s. v*(s) decomposes into the Bellman equation: V*(s)
mazq . . p(s',r|s,a)[r ++V.(s')]. The action value func-
tion Q7(s,a) = E[Rys, = s,a, = a] is the expected
return for selecting action a in state s and then following
policy 7. Q™ (s,a) decomposes into the Bellman equation:
Q7(5,a) = Y, p(s s, )l + 73, 7(@]s)Qn(s, ).

An optimal action value function Q* (s, a) = maz.Q™ (s, a) is
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the maximum action value achievable by any policy for state s
and action a. Q*(s, a) decomposes into the Bellman equation:

Q*(s,a) =>4 . p(s',r|s,a)[r + ymaze Q" (s', a’)].

Hidden Layers

Output Layer

Fig. 2. A feedforward deep neural network or multilayer perceptron consists
of an input layer, an output layer, and N hidden layers. Each layer contains
several neurons and there are connections between neurons in each layer.

Since the goal of an agent is to maximize cumulative
reward, one approach is to learn the state value function that
can predict the reward for a given state, V™ (s), and then
take the action which will bring the agent into a state that
obtains the highest reward. However, in recent years, a more
common approach is to use policy gradient methods, which
seek to directly learn the policy 7(s) that predicts the optimal
action given the current state. Popular policy gradient methods
include A3C [17], DPG [18], and PPO [19].

Deterministic policy gradients (DPG) [18] algorithm ex-
tends the policy gradients algorithm to deterministic policies
79 : S — A. In particular, under certain conditions we can
write the gradient of the objective J(6) = Eq,~[r(s, a)] as:

VHJ(G) = ESN/)" [V@ﬂ'@ (S)VaQﬂ—(Sv a‘)‘a:ﬂ's(s)]? (D
p™ is the state distribution under 7. Since this theorem relies on
V.Q7(s,a), it requires the action space (and thus the policy)
be continuous.

We obtain deep reinforcement learning methods when we
use deep neural networks to approximate any of the following
components of reinforcement learning: value function, V (s, )
or Q(s,a;0), policy 7(a|s;6), and model (state transition
function and reward function). Here, the parameters are the
weights and biases in deep neural networks. A feedforward
deep neural network (NN) or multilayer perception (MLP)
maps a set of input values to output values with a mathematical
function formed by composing many simpler functions at each
layer. After computations flow forward from input to output, at
the output layer and each hidden layer, we can compute error
derivatives backward and backpropagation gradients towards
the input layer so that weights can be updated to optimize
some loss function.

Deep deterministic policy gradients (DDPG) [20] is a vari-
ant of DPG where the policy 7 and critic Q™ are approximated
with deep neural networks. DDPG is an off-policy algorithm,
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it samples trajectories from a replay buffer of experiences that
are stored throughout training.

Vo J(0) = Esup[Voma(als)VaQ™ (s, a)|a=ry ()],  (2)
where D is the replay buffer. The objective of critic is:
£(9Q) = Es,a,r,5~p[(y — Q(s, a|9Q))2}
where y =1 +~vQ' (s, 7' (s'16™ )|69") 3)

DDPG also makes use of the target network, in which Q' is the
target Q function and 7’ is the target policy. The parameters of
target networks are periodically updated with the most recent
0, which helps stabilize learning.

There are some important applications that involve interac-
tion between multiple agents, where emergent behavior and
complexity arise from agents co-evolving together. Markov
game (MG) is a multi-agent extension of the MDP [21]. A
Markov game for IV agents is defined by a set of states S
describing the possible configurations of all agents, a set of
actions AL, ..., AN and a set of observations O, ..., O for
each agent. Each agent ¢ uses a policy mp, to select action,
which produces the next state according to the state transition
function P : S x A! x ... x AN — S. Each agent i receives a
private reward 7% as well as a observation correlated with the
state O : S+ O [22]. In some environments, there are only
a global reward for all agents.

Directly applying single-agent reinforcement learning algo-
rithms to the multi-agent setting by treating other agents as
part of the environment is problematic as the environment
appears non-stationary from a particular agent’s view, violating
Markov assumptions required for convergence. Particularly,
this non-stationary issue is more severe in the case of deep
reinforcement learning with neural networks as function ap-
proximators [23]. The extension of DDPG in the multi-agent
setting is Multi-agent DDPG (MADDPG) [24]. The core idea
of MADDPG is to train a centralized () function for each agent
which conditions on global state and actions of all agents, to
alleviate the non-stationary problem and stabilize training. The
gradient for agent ¢ is:

V@J(el) = ES’QND [V@iﬂ'ivaiQ?(S, (L17 veey aN)|ai:7r91 (oi)],
@
Here Q7 (s,al,...,a’v) is a centralized action-value function

that takes as input the actions of all agents a',...,a”, in ad-
dition to some state information s (e.g, s = (o', ...,0"V)). Let

s’ denote the next state from s after taking actions a', ..., a".
The centralized action-value function ()7 is updated by:
['(61) = Es,a,r‘s’ [(Q?(Sa ala ceey aN) - 9)2]:
Yy=rm +7Q;’Tl(8/7a1/7"'7aN/)‘aj’=7Tj’(oj): )]

where ' = {mg;, ..., T, } is the set of target policies.
III. REINFORCEMENT LEARNING FOR REAL-TIME
SCHEDULING

To show how RL can be applied to solve the real-time
scheduling problem, we first start with the policy architecture
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design. Then, we formulate the real-time scheduling problem
as MG. At last, we present how to learn real-time scheduling
policy in detail. Specifically, we propose multi-agent self-
cooperative learning to solve the credit assignment problem.

A. Policy Architecture Design

The basic purpose of a real-time scheduler is to find
an optimal order to execute the active jobs/tasks. Inspiring
by most heuristic schedulers, we intuitively design the RL
policy’s input as a sequence of job parameters and output as a
sequence of corresponding job priorities py, po, ..., pp. In this
setup, we use RL to find a mapping

(6)

in each time step to maximize the success ratio of the
scheduling process.

In order to deal with the variable-length sequence, the most
straightforward way is using the recurrent neural network
(RNN) [25] and encoder-decoder architectures [26] as policy.
The encoder-decoder has been widely used in the neural
language process [27], which maps a variable-length sequence
input with output. Since most heuristic schedulers, such as LSF
and EDF, derive the priority from the corresponding job’s local
parameters, another solution is using a NN to represent the
policy and derive the priority for each job separately. Besides,
some global information, such as the minimum deadline of
all active jobs, can be appended to the input to explore more
efficient policies.

(71,72, oy Tn) — (P1,D2, s Pn)

X | X3 Xe

Xz

Fig. 3. The recurrent neural network and encoder-decoder architecture with
one hidden layer. The circles represent neurons and the squares represent input
and output. Encoder folds the data to retain information and decoder does the
final task.

For real-time systems, the scheduling overhead is critical
and should be much less than the tasks’ execution times. Poli-
cies with lower overhead tend to be more practical. Thus, we
first compare the floating-point operations (FLOPs) between
the encoder-decoder and NN policy, assuming that the input
size and output size are I and O, respectively. For simplicity
and fairness, we suppose that the number of the hidden layer
is one, and the neurons of the hidden layers H are identical.
The FLOPs of the encoder-decoder for inferring priorities of
J jobs are:

FLOPs(encoder — decoder)
=({[xH+Hx«xH+H)xJx2+ (H+x0)x*J

=@Q2«I«H+2xH+«H+H*xO+2xH)xJ (7)
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Moreover, the FLOPs of the NN for inferring priorities of J
jobs are:

FLOPs(NN)=(I+H+H+O+H)*J (8

As we can see, the encoder-decoder policy has nearly three
times the FLOPs of NN. Moreover, as the number of layers
increases, the ratio grows faster. Meanwhile, NN policies
have higher parallelism because they compute the priority
for each job separately, and encoder-decoder policies must
compute each neuron’s output in sequence, as shown in Fig.3.
If multiple processors can be used to compute priorities, the
overhead will be greatly decreased. Hence, the overhead of
encoder-decoder policies is much higher than NN policies.

Since the MLP policy only uses the local parameter of one
active job to determine the priority, one key drawback is that
it cannot automatically extract the interrelation between all
active jobs to help make decisions. The best way to make up
is using some global information of all active jobs as input.
Moreover, although RNN has relatively good robustness to
input orders for sequences with small lengths, e.g., dozens, it is
also hard to scale to hundreds of inputs, which is a regular size
for job sets in real-time systems. Considering all these factors,
we select the second solution, i.e., using the NN to represent
the policy. The policy’s input consists of the parameters of a
particular job 7; as well as some global information that can
represent the job set. Empirically, minimum deadline, mean
deadline, mean execution time, the maximum execution time
of all active jobs, and the number of active jobs and processors
are included. The RL policy is only invoked when a new job
arrives to ensure the priority inference does not take up too
much processor time.

For real-time scheduling, a deterministic policy is more
suitable for priority inference than stochastic policy because it
is the order of jobs’ priorities that affects which jobs will be
executed. Employing a stochastic policy will break the optimal
order of priorities and make it unpredictable. Thus, the output
of the policy NN is set to the priority of a corresponding job.

Since there are no explicit criteria for what NN structure
should be used for what kind of application, the number of
layers and the number of neurons in each layer of the policy
NN for RL are often determined empirically. Recent work
has proposed the neural architecture search (NAS) [28], which
makes use of RL to automatically search the best NN structure
that maximizes the accuracy for supervised learning. However,
due to the high cost of online learning, NAS is difficult to use
in RL tasks. The policy structure mainly affects the overhead
of executing the policy, so lightweight NNs with shallow layers
and few neurons are more suitable for real-time systems. On
the other hand, lightweight NNs tend to be easier to train due
to their fewer parameters. In this paper, we empirically design
a lightweight NN structure with one hidden layer and eight
neurons as the policy. Furthermore, the rectified linear unit
(ReLU) [29] is applied for each hidden layer as the nonlinear
activation function. The ReLU is expressed as ReLU(x) =
max(0,2), which has the lowest computational complexity
among all activation functions.
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B. MG Formulation

We intuitively regard each job as an agent because they
follow a decentralized NN policy to determine the priority,
respectively. Then we reformulate the real-time scheduling
decision process as an MG. Each system state consists of n
vectors, s; = (s}, ..., s7') where each component s! is the state
of the corresponding agent, i.e., active job 7;. An agent’s state
is parameters of 7;, such as remaining execution time and
absolute deadline. The action of each agent is its priority. For
each step, the transition system determines which jobs will
be executed by their priorities and the number of processors.
The remaining execution time of job ¢ will be decreased one
time unit if executed: ¢;(t + 1) = ¢;(¢) — 1. The job i will be
removed from the job set if ¢;(t) =0 or d; = t.

St Ay St+1
Job 1[cy (t), dy] : 2 Job 1[cy(t + 1),d,]
Job 2[e (), da] b2 > Pe > Pz > ?1._ Job 2[c, (¢ + 1), d;]
Job 3[c3(t),d3] Job 3[cs (¢ + 1), ds]
Job 4[c,(t), dg] Job d[cy (¢ + 1), dy]

(a)  Neither completed jobs nor released jobs at time ¢ + 1. ¢1(t + 1) =
c1(t),ca(t+1) = ca(t),c3(t + 1) = e3(t) — L,ca(t + 1) = ca(t) —
l.ci(t+1) > 0and d; >t + 1 for each job ¢ in the job set at time ¢ + 1.

St Ay Sts1

Job 1[ey (t + 1), d; ]
Job 2[cy(t + 1),d;]
Job 3[ca(t + 1),d3]
Job 4[cy(t + 1),d4]
Job 5[cs(t + 1),ds]

Job 1[e(t).d,4]
Job 2[c,(t),d;]
Job 3[cs(t), ds]
Job 4[c, (), ds)

P3 > P4 > P2 > Py

(b) A new job will arrive if the arrival condition is met. ¢1(t + 1) =
c1(t),ca(t+1) = ca(t),c3(t + 1) = c3(t) — 1,ca(t + 1) = ca(t) — 1.
ci(t+1) > 0and d; > t+ 1 for each job 7 in the job set at time ¢ + 1.
St Ay St41
Job 1[cy (£), d4]
Job 2[c,(t), dg]
Job 3[cy(t), ds]
Job 4[c,(t), ds]

Job 1[cy(t + 1),d4]
Job 2[c,(t + 1), d;]
Job 3[cs(t + 1), d3]

P3>Ps=P2>P1

(c) A current job misses or meets its deadline. It will be removed from the
job set. If job4 misses its deadline, d4 = t+1 and c4(t) > 1. If job4d meets
its deadline, ca(t) = 1. c1(t + 1) = c1(t),c2(t + 1) = ca(t),c3(t + 1) =
e3(t) —1.¢;(t+1) > 0 and d; > t+ 1 for each job 7 in the job set at time
t+ 1.

Fig. 4. MG transition of the real-time scheduling decision process.

We demonstrate the transitions of this MG by the examples
given in Fig.4. The scheduling behavior of a multiprocessor
system having two processors is shown in this figure. Three
cases are depending on whether jobs are completed or new
jobs arrive at time ¢ + 1. If there are no jobs completed or
released at ¢+ 1, the two jobs having the highest priorities will
be executed, as shown in Fig.4 (a). Meanwhile, the remaining
execution time of job three and job four is reduced by a time
step. Fig.4(b) shows a special case that a new job instance is
released. In the above cases, all jobs’ deadlines are later than
t+ 1, and the remaining execution times of job three and job
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four are larger than 1. In the third case, there is a certain job
completed. The job 7 meets the deadline if ¢;(t + 1) = 0, or
it misses the deadline if ¢;(¢ +1) > 0 and d; = ¢t + 1. The
completed jobs will be removed from the job set at time ¢+ 1,
as Fig.4(c) shown.

The goal of reinforcement learning is to maximize the
expectation of cumulative rewards E(Ry). Therefore, the per-
formance of learned policy depends largely on the reward
function. Instead of explicitly designing a reward function
by domain knowledge, we derive the reward function by
objective function transformation from real-time scheduling to
reinforcement learning to ensure the performance of learned
policies. The goal of real-time scheduling is to schedule jobs to
make as many jobs as possible meet their deadlines. Therefore,
an ideal learning algorithm should learn a policy 7 that can
maximize the expectation of the success ratio. Suppose that
SJ is the set of jobs that meet their deadline, and F'.J is the
set of jobs that miss their deadlines. The total number of jobs
that meet their deadlines is |S.J|, and the total number of jobs
that miss their deadlines is |F'.J|. T'S is all possible initial task
sets for a specific real-time system. The objective of real-time
scheduling is to find a scheduling policy 7 that

5]

57+ 1FJ] ©)

max Epg(
s
The above objective is equivalent to maximize |S.J| and
minimize |FJ| simultaneously, which can be rewritten as:

max Epg (S]] —[F]]) (10)
We discretize the scheduling process by processor time unit,
i.e., a discrete and indivisible unit of time determined for
a specific processor. For any time ¢, let |SJ;| denotes the
number of jobs whose completion times equal to ¢ that meet
their deadlines, and |F.J;| denotes the number of jobs whose
absolute deadlines are ¢ that miss their deadlines. The objective
can be rewritten by |S.J;| and |F'.J;|:

mgXIETS(Z|SJt| — |FJy)) (11
t

To ensure the RL policy can maximize the success ratio, we
derive a reward function of each time instant as below:

e =[S — |[FJy (12)

Then, the objective function of real-time scheduling is trans-
formed to the objective function of reinforcement learning, as
shown below:

mﬁXETs(Z Tt) (13)

t

Hence, the objective function of real-time scheduling is trans-
formed to the objective function of reinforcement learning
through the reward function. With this reward function, rein-
forcement learning can generate high-performance scheduling
policies that maximize the success ratio among the possible
initial task sets for a specific real-time system.
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Fig. 5. The framework of our approach. The RL scheduler obtains the
experiences by interacting with a real-time system. It stores the experience in
a replay buffer and learns from the sampled data. Scheduling policy will be
improved through continuous interaction and learning.

C. The framework of Learning Scheduling Policy

The framework shows the online learning process for
scheduling policy. As shown in Fig.5, the environment is a
real-time system with M processors and N tasks. There is
also an active job set with n jobs. Similar to global schedulers,
the RL scheduler/policy generates the priority for all active
jobs and selects M jobs with higher priorities to execute.
The scheduling experience is stored in the form of 4 tuples
(8¢, a¢,7¢,8¢11) in the replay buffer. We extend the actor-
critic architecture to learn policy and train double NNs to
approximate policy and () function. The learning process can
be divided into two steps: collecting samples and updating the
neural networks’ parameters.

(1) Collect samples: During system runtime, the RL sched-
uler observes state information from the environment at each
time. And then, the policy neural network is invoked for
priority inference. As mentioned before, the action of the RL
scheduler is priorities of current jobs. After receiving an action
from the RL scheduler, the environment selects the top M jobs
with the highest priority to execute. After executing, the RL
scheduler receives the next state and reward from the envi-
ronment. The above process is called a complete interaction
between the agents and the environment. Experiences from
each interaction will be stored in a replay buffer. There is
usually a maximum size of replay buffer. When the buffer is
full, old experiences will be discarded.

(2) Update network: Agents learn from the experiences
stored in the replay buffer. Each time, a batch of experiences
is sampled from the replay buffer and used to train policy
neural networks and value neural networks. The value NN is
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often refined by mean square error (MSE) as the loss function,
firstly.

M

Z (Ym — ym)2

m=1

1

MSE = U (14)
And then, the parameters of the policy neural network
is updated in order to maximize the objective J(6)
Esmpr,ammy D 7(5,a)] by taking steps in the direction of
Vo J(0). We will discuss how to learn the policy in detail
in the following subsection.

The above two steps are independent and can be executed
in parallel.

Since periodic tasks can be regarded as aperiodic tasks with
a fixed interval, the framework is also suitable for periodic
tasks or uniprocessor systems. Furthermore, it is noted that
our reinforcement learning framework has good potential to
be extended to real-time systems with various characteristics.
For example, if the systems that execute real-time tasks having
weights or values, a weighted reward function could be used
to learn scheduling policy. For real-time tasks with precedence
constraint, usually represented by a directed acyclic graph, the
graph neural network could be employed to compute priorities
for such task sets and train it by reinforcement learning
approach.

D. Self-cooperative Learning

In our multi-agent setting, there are n homogeneous agents
cooperating to get the job done in the environment. At each
step t, they obtain a global reward r; as a function of the state
and agents’ action r; = E[r(ss,a},...,al)]. These n agents
cooperate with each other to maximize the joint cumulative
expected return E[Rp]. So this is a cooperative game for the
job agents [30].

In most multi-agent environments, the number of agents
is often fixed. However, the number of jobs keeps changing
in the real-time system. The input of centralized ) function
is a set of jobs’ states and actions (s',al,s? a?,...,s", a")
which is a variable-length sequence. Besides, the agents are
homogeneous, so that the centralized ()-value should be the
same no matter what input order is. In other words, the
centralized () function must be invariant to input permutation,
as shown in formula (15):

Q(...,s% al,....s" ¥, ..) =Q(..,s* d" ..,s" al,..) (15)

In order to meet both of the above requirements, we use the
symmetric function to aggregate the information from each
point. The symmetric function takes n vectors as input and
outputs a new vector invariant to the input order. For example,
+ and * operators are symmetric binary functions [31]. We
propose Self-Cooperative Learning (SCL) in this paper. The
main idea of SCL is to approximate a centralized () function
by applying a symmetric function on decentralized () function,
Q for each agent, and the centralized @ function is defined
as:

Qs a™)  (16)
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Algorithm 1 Learning scheduling policy by self-cooperative reinforcement learning

1: Randomly initialize critic networks Q(s, a|0%) and actor network 7(s|6™) with weight #9 and 6™ as well as corresponding

target networks.
: Initialize replay buffer B

. Initialize a Gaussian random process N and a exploration episode EP for action exploration

2

3

4. for episode = 1, MAX_EPISODE do

5 Reset environment

6 Randomly generate a task set

7 Receive initial observation state sq

8 for t = 1 MAX_STEP do

9 if episode < EXPLORE_EPISODE then

10 Sample a random action a; ~ N for the job set
11: else
12: Select an action a; = 7(s;) from current policy for the job set
13: end if
14: Execute action a; and observe reward r; and new state S;y
15: Store experience (S, at, r¢, S¢4+1) in B
16: Sample a batch of experiences D from B
17: Sety =1 +75 >, Q' (s, 7 (5"]07)|69")
18: Update critic by minimizing the loss:£(09) = Eq o oun[(y — + 3, Q(s%,a’|09))?]
19: Update the actor policy using the sampled gradient:
Vo= J(0T) = IESND[% > Veww(si|9”)Vﬁ(si‘9ﬂ)Q(si, 7(s'0™)]69)]

20: Update the target networks:

99" «— 109 4+ (1 — 7)69

07 70" + (1 — 7)o"
21: end for
22: end for

The decentralized ) function, Q is state-action value function
for a single agent in the environment. Although we regard the
scheduling process as a multi-agent setting, agents essentially
take the same policy 7. In our setting, both the centralized
@ function and decentralized ) function are only w.r.t. 7.
Therefore, it is reasonable to represent the centralized @
function by decentralized ) function in our setting.

Since the agents only receive a global reward from the
environment and the global reward is incurred by all agents’
actions, we cannot directly train the decentralized () function
by global reward. In multi-agent cooperative tasks, it is hard
to assign the global reward to each agent impartially. That is
the credit assignment problem.

To overcome the credit assignment problem, we try to
express the centralized and decentralized () function by the
global reward rather than the local reward. Suppose 7 is the
local reward of agent 7 at time t, we have

e = Eq[r}] (17)

The decentralized () function for agent ¢ decomposes into the
Bellman equation (t is omitted):

Q(s',a") = ' +1BeunplQ' (s, 7' (s"))]  (18)

Our approach also makes use of a target network, as DDPG
and DQN. Sum over all the decentralized ) functions at the
time ¢ and then divide by the number of jobs, we have:

Q(s,a) = % Z Q(s',a")
B (DY) )

Thus, decentralized @ function can be represented by global
reward r. And we approximate Q(s7 a) by a NN and ¢ by a
mean pooling function which is invariant to input permutation.
The parameter € for value neural network is updated through
sampling a batch of experiences D from the replay buffer. The
loss function is:

£(09) = Byaromnlly - 5 32 Q' all09)?),

o 1 SNtgdit 1 il g\ pQF
wherey—7—|—7NZQ(s , 0 (s7107)[60%),  (20)
7
The gradient of loss function is:
1 s
V4o L(09) = Eqare~pl(y = Z Vo Q(s', a'|09))2],
7

ey

The objective of policy neural network with parameter 07 is:

JO7) = Eoly 3 QL a(0D09), 22
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Gradient of objective can be written as:
™ 1 LT
Vor J(07) = Bounl; D Vorm(s'107) Vngatjor)
(2

Q(s', m(s'|67)|6%))],

Moreover, instead of directly copying weights, target networks
use “soft” updates [32]. A copy of the networks for both
the actor and critic are created, denoted by @Q’(s,a) and
7' (s, a) respectively, but their weights are updated by slowly
tracking the learned network, as shown in (24). The use of
target networks helps improve the stability of the learning by
constraining the weights to change slowly.

(23)

09" — 109 + (1 —7)0%

0% — 767 + (1 —7)6" (24)

The complete learning algorithm is shown in algorithm 1. In
order to accelerate training, We randomly perform actions to
collect samples in the first few episodes.

IV. EVALUATION

In this section, we evaluate the performance of the proposed
RL approach using randomly generated task instance sets.
Specifically, we first train RL policies using self-cooperative
learning under different settings and then evaluate RL policies
and baselines with different metrics.

A. Simulation Setup and Metrics

Compared with CPU, GPU is more suitable for neural
networks in training and inference. However, most real-time
systems do not have any GPU resources. Hence, all schedulers
only use the CPU to make scheduling decisions in the experi-
ments. The platform used to collect the experimental data is a
Windows desktop with Intel Core i7-6700 3.40GHz CPU with
eight cores, 16GB of RAM.

More than 10 thousand randomly generated task sets are
used for training and evaluating the scheduling policy. Specif-
ically, we generate aperiodic task loads with exponentially
distributed arrivals, exponentially distributed execution times,
and uniformly distributed deadlines. The rate parameter for the
exponential arrival interval varies from 12 to 25 to help gen-
erate different workloads. This rate parameter is the expected
value of the job arrival interval. The relative deadlines follow
uniform distribution U5, 50]. For each randomly generated
task 75, its execution time, C; follows exponential distributions
whose rate parameter is set according to task 7;’s granularity.
Here 7;’s granularity is defined as the ratio of its execution
time and relative deadline, i.e., C;/D;, which vary from 0.1 to
0.6. The number of tasks N is five times the processor number
M, and each task has at least 20 job instances to make sure
that each experiment is carried for a sufficiently long time. The
preemption and migration overhead is ignored if not explicitly
declared.

We use the success ratio to evaluate the performance of
learned scheduling policies and baseline heuristics. The suc-
cess ratio is defined as the percentage of jobs that meet their
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deadlines. We also evaluate the execution overhead of the RL
scheduler and baseline scheduler, using the time complexity
and time overhead as metrics.

B. Training Policies

To speed up training, we carry our training experiments
on a Ubuntu 16.04 server with Intel Xeon E7-4809 2.10GHz
CPU, 2 NVIDIA Tesla P100 GPU. The use of GPU is
to accelerate training. PyTorch [14], an open-source Python
machine learning library, is used for constructing and updating
neural networks. The hyper-parameters for training are shown
in TABLE L

TABLE I
HYPER-PARAMETERS

Parameter Value
Memory capacity of replay buffer le6
Batch size 100
¥ 0.95
T le-3
Explore episodes 30

Learning rate for policy NN le-3
Learning rate for value NN le-2
Number of hidden layers of value NN 2

Number of neurons in each layer of the value NN 8, 4

The task instance sets for training are randomly generated,
following the pattern described in the previous subsection.
We train the scheduling policy based on Algorithm1 until
convergence. (at least 200 episodes).

C. Success Ratio Evaluation

In this subsection, we investigate the performance of learned
scheduling policy in terms of success ratio at first. Specifically,
we compare the success ratio between RL policy with three
heuristic scheduling policies, G-EDF, EDF-BF, and LSF. For
the simulation data to be presented, each data point on each
curve in the figures is the average of 50 experiments, each
carried out for a sufficiently long time (more than 1000 job
arrivals). For fairness, in each experiment, the same random
job sets are used to evaluate different scheduling policies.

We first evaluate the success ratio over different loads and
task granularities. The load is defined as the sum of actual
computation times of all the arriving jobs over the time interval
during which they arrive.

As seen from Fig.6, our learned policy has the best overall
success ratio comparing with the baselines. These simulation
data are collected for different incoming loads. The above
result shows that our RL approach makes policies converge
to the high success ratio. At low loads, as expected, nearly
all jobs meet their deadlines no matter which policy is used.
As the load increases, more and more jobs miss their dead-
lines, the success ratios of all policies decrease as expected.
Although heuristics have a high success ratio in low loads,
their performance decreases rapidly when the load exceeds 0.9.
The success ratio of RL policy decreases much more slowly
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Success Ratio
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1?0 1j1 1?2 1j3
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07 0.8 0.9

Fig. 6. Success ratio under different system loads for reinforcement learning
policy and heuristic policies. The granularity is less than 0.4. N = 40, M = 8

and consistently obtains high success ratios for different loads.
Only the success ratio of RL policy remains above 80% when
the load increases to 1.3.

Generally, it is hard to schedule task sets with large granu-
larity tasks. To further verify the robustness of the RL method,
we test some extraordinary task sets that contain both small
granularity tasks and large granularity tasks. In these cases,
the granularities of most tasks are more than 0.4. From Fig.7,
one can see that RL policy achieves better overall performance
than other heuristics. Compared to the performance under low
task granularity, the performance gaps between RL policy and
other policies grow more rapidly as the load increases. The
success ratio of RL policy is 5% ~ 10% higher than the best
heuristic policy when the load exceeds 0.9.

100

95 4

90

85 4

80 1

Success Ratio

754

701

65 T T : T
1.0 11 1.2 13
Load

0.7 0.8 0.9

Fig. 7. Success ratio under different system loads for reinforcement learning
policy and heuristic policies. The granularity of tasks is large than 0.4. N =
40,M =38

Then, we evaluate the success ratio over different numbers
of processors, as shown in Fig.8. For this set of simulations,
the granularity of tasks is less than 0.4, and the system
loads are about 1. As the number of processors increases, the
success ratio gets closer to 100. These results show that our
RL approach can learn sound policies for real-time systems
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with different numbers of processors, system loads, or task
granularity.

100.0

97.54

95.0 4

92.5 4

90.0 4

Success Ratio

87.51

85.0 4

82.5 4

80.0

2 4 6 8 10 12 16
Number of Processors

Fig. 8. Success ratio under different number of processors for reinforcement
learning policy and heuristic policies. The average granularity of all tasks is
0.3.

In the real world, the preemption overhead is ubiquitous.
Some real-time systems may have a non-negligible preemption
overhead. To verify the applicability of the RL approach for
such systems, we test the RL approach on a specific system
with a time step preemption overhead. Besides, a new feature
that indicates whether the job is running on a processor must
be added to NN’s input as a crucial characteristic. In Fig.9,
we show the learning process of the RL policy and use
GEDF to schedule the same task sets in each episode as the
baseline. During the learning process, the success ratio of the
RL policy increases gradually and exceeds the baseline in
about 80 episodes. Experimentally, the proposed RL approach
has good convergence and scalability for real-time systems
with preemption overhead. For other real-time systems with
various characteristics, the RL approach can also learn high-
performance policy online.

90.0

— GEDF
87.54

85.0 4

{[+]

82.51

Success Rat
-4 [=-]
e =
w o
s L

75.0 4

72.51

70.0 T T T T
100 125 150 175
Episodes

50 75

Fig. 9. Learning process on a system with one time step preemption overhead.

D. Overhead Evaluation

Another important consideration in evaluating scheduling
policies is their actual runtime overhead. Generally, it is hard
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to measure the actual runtime overhead for baseline heuristics
because they only use simple formulas for computing pri-
orities. So, we analyzed and compared the time complexity
and FLOPs for RL schedulers and baseline heuristics. Simple
heuristic schedulers compute the priority for all jobs and do
a binary search or sort to prioritize all active jobs. The time
complexity could be O(logN) for GEDF and O(N) for LSF,
where N is the number of active jobs. In the RL method, the
scheduler computes the priorities of all jobs by invoking the
policy neural network N times and then sort the priorities. The
time complexity of RL schedulers could be O(N), which is
not lower than simple heuristics. Moreover, baseline heuristics
always compute priorities based on a simple formula, e.g.,
D; — C; in LSF. Their FLOPs for each job are approximately
one. However, RL schedulers use policy NN, a relatively
complicated method to compute priorities. The FLOPs of RL
schedulers shown in section III.A are larger than baselines.

Although baseline schedulers have relatively lower over-
heads than RL schedulers, RL policies’ overheads are also
tolerable in many computationally demanding tasks (applica-
tions). On the other hand, their overheads could be further
reduced by using simpler approximators or parallel computing.
To demonstrate the parallelism of RL schedulers, we then
test the actual overhead time of RL policies under different
numbers of jobs in the multiprocessor system. As shown in
Fig.10, the learned scheduling policy’s total overhead stays at a
relatively low, stable level. Specifically, the average overheads
only increase 50 microseconds as the job number increase
from 10 to 500. The overheads do not increase linearly
because the policy neural network is computed in parallel
by a multiprocessor. Furthermore, some applications would
prefer high-performance RL schedulers rather than baseline
schedulers having lower overheads. For example, in avionics
and automotive control applications, jobs usually require hun-
dreds of thousands or millions of cycles to execute. Hence,
RL policies are more suitable for many applications.

Overhead (microseconds)

50
number of active jobs

100

Fig. 10. Minimum, mean and maximum overheads under different number of
jobs. We test 10 thousand different data for each number of jobs in a 8-core
processor system.
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In this section, we have verified the effectiveness of multi-
agent self-cooperative learning through simulation results. One
can be readily seen that the multi-agent self- cooperative
learning can learn an acceptable scheduling policy for various
task/system models. The learned scheduling policy has low,
stable overhead and high scheduling performance, making it
strongly desired by real-time multiprocessor systems that deal
with unpredictable frequent task instance arrivals.

V. USE CASE

In this section, we demonstrate how the RL approach
in this paper might be realistically applied. A prospective
application is the Unmanned Vehicle System (UVS), which
attracts significant interest in the critical embedded market.
Supporting advanced UVS functionalities requires real-time
systems capable of performing real-time processing of a mas-
sive amount of diverse data, consistently coming from a score
of on-board sensors, such as LiDARs and IMU [33]. The real-
time tasks in UVS consist of perception, control, localization,
planning, prediction. An intuitive example is shown in TABLE
1L

TABLE I
AN EXAMPLE OF REAL-TIME TASKS IN UVS

Task | Execution Time (ms) | Deadline (ms) | Period (ms)
Perception 150 300 500

Control 8 20 Aperiodic
Localization | 10 50 Aperiodic
Planning 200 500 500
Prediction 150 400 1000

First, to learn a high-performance scheduling policy, one
should select an approximator with appropriate complexity as
the scheduling policy based on the system’s computational
resources. The input to the policy must include all task
characteristics that can help prioritize. Then, the RL algorithm
runs the scheduler to collect samples during system runtime
and updates the policy using the samples until convergence.
Since the RL approach is learning from real systems, it
must lead to scheduling policies that are stronger than simple
heuristics. Users can also try different hyper-parameters and
approximators, then select the best policy. If the system
changes in the future, users can use RL again to improve the
policy.

VI. RELATED WORK

Glaubius et.al. [34] has represented the real-time scheduling
decision model on the open real-time system as an MDP,
and suitable scheduling policies are learned online using
reinforcement learning [35]. In open real-time systems, jobs
are released periodically. Whenever a job is granted the
resource, it occupies the resource for a finite and bounded
subsequent duration. The duration for which a job occupies
the resource may vary from run to run of the job released
by the same task, but overall obeys a known independent and
bounded distribution over any reasonably large sample of runs
of that task. The objective of scheduling is to achieve near-
optimal schedules to maintain relative utilization of shared
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resources among tasks near a user-specified target level. Since
their method is based on a traditional non-deep reinforcement
learning algorithm, it has poor convergence and only computes
static scheduling forms for given tasks. Hence, it is not easy to
extend their work to learn a robust dynamic scheduling policy
for multiprocessor systems executing aperiodic tasks.

VII. SUMMARY, DISCUSSION AND FUTURE WORK

The traditional design pattern of real-time scheduling policy
is in a dilemma. In this paper, we investigate a new real-
time scheduling framework based on reinforcement learning.
We formulate the real-time decision model as MG and derive
the reward function from the objective function of real-
time scheduling. Specifically, we introduce multi-agent self-
cooperative learning, a novel reinforcement learning approach
that solves the credit assignment problem and mitigates the
curse of dimensionality. The main idea of self-cooperative
learning is to use the symmetric function to aggregate each
job’s value function to approximate the centralized value
function. We implement a real-time scheduling simulator and
the proposed reinforcement learning algorithm. Simulation
results show that the proposed RL approach can train a
well-performance scheduler. Since the learned RL policy has
low, stable overhead and high performance, it would also
be strongly desired by the real-time systems that deal with
unpredictable frequently-changing job arrivals. The safety of
our approach can be guaranteed by equipping an admission
controller that avoids online deadline misses.

In the future, we will optimize our method in generaliza-
tion and convergence by using other learning algorithms or
function approximators. As another follow-up work, we intend
to extend our work to help the offline design of hard real-
time multiprocessor systems through automatically learning
scheduling policy and testing system safety (feasibility). We
also intend to explore learning scheduling policies for real-
time systems with complex characteristics. In this paper, we
have only considered using fixed structure models for learning
a high-performance policy. We will explore how to learn both
optimal and low-overhead policies simultaneously.
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