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Abstract. Convolutional Neural Networks (CNNs) are extensively used in cyber-
physical systems for tasks like object detection and semantic segmentation. Given
the critical nature of these systems, the ability of CNNs to meet stringent timing
constraints is as crucial as their accuracy. However, variability in CNN execu-
tion times can lead to time constraint violations, affecting system reliability. To
address this, we introduce RetNAS, an efficient neural architecture search frame-
work that combines a rapid Worst-Case Execution Time (WCET) estimator and a
constraint schedule to ensure timely performance.We utilize extreme value theory
to estimate WCET, leveraging a generalized Pareto distribution based on limited
execution time samples. Furthermore, RetNAS employs a constraint schedule to
accelerate the search efficiency,which pursues a gradual search trajectory.RetNAS
significantly enhances search efficiency and achieves a success rate of approxi-
mately 99.2% in meeting time constraints, outperforming other methods. Our
experiments also show that CNNs designed by RetNAS surpass the accuracy of
manually designed CNNs and visual transformers by 0.4% to 5%.

Keywords: Convolutional Neural Network · Neural Architecture Search ·
Real-time Systems

1 Introduction

Convolutional Neural Networks (CNNs) have significantly advanced in recent decades,
impacting various fields which demand high accuracy and strict adherence to time con-
straints. In critical applications such as autonomous driving, failing to meet these con-
straints can have severe consequences [7]. However, the inherent variability in CNN
execution times makes it challenging to design architectures that achieve both high
accuracy and meet stringent timing requirements [19].

Manually designed lightweight CNNs offer a balance between execution time and
accuracy but lack customization for specific time constraints. Neural Architecture Search
(NAS) [1, 12] automates CNN design, optimizing both accuracy and execution time [17,
26]. However, these approaches often fail to meet real-time application requirements
where strict time constraints are crucial. Real-time systems require programs that can
guarantee Worst-Case Execution Time (WCET) within set limits to prevent catastrophic
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failures [24]. Existing NAS algorithms often struggle to consistently ensure that each
execution adheres to time constraints due to considerable variations in CNN execu-
tion times. Accurately determining the WCET of a CNN typically demands extensive
testing, leading to substantial time overhead [18]. Additionally, NAS involves searching
through an immensely large search space, where evaluating theWCET for each sampled
architecture incurs prohibitive time costs.
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Fig. 1. Overview of our RetNAS framework. RetNAS integrates an EVT-based WCET estimator
and a constraint schedule method to meet the time constraints of real-time applications.

To address this problem, we propose an efficient NAS framework named RetNAS
(Real-time Neural Architecture Search), specifically tailored for designing real-time
CNNs for time-critical systems. To the best of our knowledge, this is the first initiative
to focus on neural network architecture design under stringent time constraints. Figure 1
presents an overview of RetNAS. Building upon the entropy-based NAS framework
[23], RetNAS innovatively redefines the evaluation process by incorporating a novel
WCET estimator based on Extreme Value Theory (EVT). This approach enables rapid
WCET estimation without exhaustive testing, which significantly reduces the compu-
tational demand in NAS. RetNAS also integrates a constraint schedule, instrumental in
guiding the search process toward architectures that meet these strict time constraints.
Experimental results demonstrate that RetNAS can identify CNN architectures that not
only achieve the desired accuracy levels but also adhere to specified time constraints.
This dual-objective strategy is essential for enhancing the functionality of autonomous
systems, ensuring both high accuracy and reliability in real-time applications. The
contributions of this paper are summarized as follows:

– We propose an EVT-basedWCET estimator for rapid and accurateWCET estimation
for CNNs.

– We introduce a constraint schedule in steering the search process towards meeting
aggressive time constraints.
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– Through comprehensive experimental evaluations, we validate the effectiveness of
RetNAS, demonstrating its superior performance in meeting time constraints and
achieving high accuracy.

The remainder of this paper is organized as follows: Sect. 2 reviews related work
in neural network design and time analysis. Section 3 presents the problem formulation
for designing real-time CNNs. Section 4 details the RetNAS framework, while Sect. 5
describes extensive experiments to evaluate RetNAS’s effectiveness. Conclusions are
finally drawn in Sect. 6.

2 Related Work

2.1 Neural Network Design

CNNdesign is predominantly manual, discovering new design choices like residual con-
nections [6] and vision transformer [13] to enhance accuracy and reduce complexity. The
shift from manual to automatic design has been facilitated by NAS [1]. However, NAS
are usually very time-consuming in evaluating accuracy and time. Predictor-based meth-
ods encode architectures into high-dimensional vectors to streamline the process [16].
One-shot methods reduce training costs by leveraging a large supernet [12]. Moreover,
zero-shot methods, such as those utilizing Zen-Score [11] and Entropy [23], replace tra-
ditional accuracy metrics with alternative measures to further minimize training costs.
For time-critical system designs, studies aim to optimize accuracy and latency, often
by minimizing or imposing constraints on FLOPs [12] or real execution time [17, 26].
ZenNAS [11] and DeepMAD [23] focus on managing average execution time, while
MnasNet [26] and EdgeNAS [17] use a weighted product of accuracy and execution
time. These methods do not ensure each CNN execution meets specific time constraints,
highlighting the need for neural architecture design methodologies specifically tailored
for real-time applications.

2.2 Time Analysis of Neural Networks

Time is a pivotal factor in real-time applications,where delays can impact user experience
or result in failures in safety-critical systems [24]. The execution times of CNNs can vary
due to factors like input data, network dynamics, and memory contention [7, 19]. This
variability necessitates rigorous time analysis to ensure CNNs operate within the strict
time constraints of real-time environments. WCET analysis is essential for maintaining
temporal accuracy, requiringCNNs to staywithin predefined execution limits [21]. Static
methods often face practical limitations and can be overly pessimistic, typically requiring
access to proprietary code. Statistical methods provide empirical insights but lack the
certainty needed for strict WCET compliance [5].

3 Problem Formulation

The design of real-timeCNNs is framed as an optimization problemwith dual objectives:
maximizing accuracy and adhering to strict time constraints. We define the architecture
space and seek an architecture a that optimizes accuracy while satisfying a time
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constraint C, which reflects the specific requirements of real-time applications. The
optimization problem can be expressed formally as follows:

(1)

s.t. WCET (a) ≤ C (2)

Unlike previous approaches that focus on average execution time, ourmethod empha-
sizes strict adherence to time constraints, a necessity in real-time systems. The vari-
ability in execution times and the complexity of determining a CNN’s WCET make
finding optimal architectures challenging1. Accurately obtainingWCET (a) is resource-
intensive, requiring extensive inference time tests and potentially consuming thousands
of GPU-days. The narrow portion of the search space meeting stringent time constraints
complicates the NAS process, making feedback from architectures that do not meet time
constraints ineffective and the search nearly random and inefficient.

4 RetNAS Framework

4.1 EVT-Based WCET Estimator

Accurately estimating theWCET of a CNN architecture is crucial when applyingNAS to
design CNN. To delve into the nature of CNN execution times, we analyzed CNN execu-
tion times by conducting experiments with ResNet18 on an NVIDIA A100 GPU, which
revealed a significant long-tail distribution. This observation led us to apply EVT [3],
traditionally used in meteorology and finance, to model the extreme events in CNN exe-
cution times.After confirming the independence of extremevalue datawith extremogram
tests, we employed the Pickands-Balkema-de Haan Theorem to more precisely model
the tail distributions using a Generalized Pareto Distribution (GPD) [20] (Fig. 2).

(a) Histogram            (b) Quantile-Quantile Plot          (c) Extremogram

Fig. 2. Statistical analysis of execution time for the ResNet18.

1 Given the challenges in achieving a strict WCET, minor deviations are permissible, aligning
with the principles of soft real-time systems.
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Theorem 1 (Pickands-Balkema-de Haan Theorem). Let X be a random variable
with distribution function F . If F belongs to a broad class of distribution functions, for
any y > 0, the conditional excess distribution function over a threshold u converges to
the GPD as u approaches the upper endpoint of F:

lim
u→xF

Pr

(
X − u

σ(u)
≤ y|X > u

)
= G(y), (3)

where xF is the right endpoint of the distribution of X , and G(y) represents the GPD
function.

This theoretical foundation supports our approach using EVT to estimate theWCET
for CNNs. The probability density function (PDF) of the GPD captures the behav-
ior of data beyond high thresholds efficiently, providing a robust framework for our
estimations:

f (x;μ, ξ, σ) =
{

1
σ
(1 + ξ(

x−μ
ξ

))
− 1

ξ
−1

, ξ �= 0
1
σ
e− x−μ

σ , ξ = 0
(4)

where μ is the location parameter, σ > 0 is the scale parameter, and ξ is the shape
parameter.

Our proposed EVT-basedWCET estimator begins by collecting execution time sam-
ples from different CNN architectural elements, which are then fitted to a GPD. This
process involves running forward propagation n times per CNN architecture with a batch
size of 1, producing n execution time recordings that are sorted from smallest to largest.
The tail of this distribution is analyzed by setting a threshold for tail data and fitting the
GPD using the maximum likelihood method for all samples exceeding this threshold.
The WCET is estimated based on the scale parameter σ

∧

and shape parameter ξ
∧

of the
GPD, which calculates the execution time corresponding to a specified confidence inter-
val. This efficient method requires a minimal number of test samples, making it ideal for
rapid WCET estimation in NAS contexts. The procedure is summarized in Algorithm
1.
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4.2 Constraint Schedule

Designing efficientCNNs tomeet aggressive time constraints is challengingbecause only
a minor segment of the architecture search space may satisfy these stringent require-
ments. Ineffective feedback during the search process occurswhen sampled architectures
do not meet the time constraints. To address this, we introduce a constraint schedule
method that progressively directs the search towards these constraints. Initially, con-
straints are set to a lenient level, allowing for broad exploration of architectural pos-
sibilities, fostering creativity and innovation. As the search progresses, constraints are
gradually tightened, guiding the exploration towards architectures that increasingly align
with the target constraints. This dynamic adjustment ensures that by the final iterations,
the architecture not only meets but is optimized for the initial constraints.

The constraint schedule divides the search process into M segments, assuming a
total of T NAS iterations. Each segment, denoted by the tth round, corresponds to the
�t · M /T�th segment. The initial time constraint is C0, and the final target constraint
is C. We explore two types of constraint schedules: linear and exponential. The linear
schedule provides a steady progression of constraints:

Clinear(t) = C0 +
⌊
t · M
T

⌋
· 1

M
· (C − C0) (5)

The exponential schedule adjusts constraints more rapidly at first and then more
slowly, offering a nuanced control:

Cexp(t) = C0 ·
(
C

C0

)⌊
t·M
T

⌋
· 1
M

(6)

4.3 Maximum Entropy-Based Search

Efficiently computing accuracy is crucial in NAS for ranking architectures [11, 26].
Recent studies [23] have demonstrated a positive correlation between the entropy of a
CNNand its accuracy.Hence,we utilizeCNNentropy as a proxy for estimating accuracy.
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Definition 1. For a CNN layer i with input channels ci, output channels ci+1, kernel
size ki, and group gi, the CNN operator performs matrix multiplication represented
as Wi ∈ Rci×ci+1×k2i /gi . For an L-layer network parameterized by {ci, ki, gi, ri}Li=1, its
entropy is defined as:

H � log
(
r2L+1cL+1

)∑L

i=1
log

(
cik

2
i /gi

)
(7)

RetNAS’s search space includes residual and bottleneck blocks as defined in ResNet
[6, 22], with each block searched separately to optimize layer configurations. Each
block’s search space comprises input and output channel counts, kernel size, and number
of layers. Followingmaximum entropy principles, RetNAS aims tomaximize the overall
entropy of the architecture to enhance accuracy.

The step-by-step description of RetNAS, detailed in Algorithm 2, utilizes an evolu-
tionary algorithm as the architecture search controller, following the SOTA NAS frame-
work [11, 23]. Alternative search controllers such as reinforcement learning [1, 26] or
differentiable search methods [12, 17] could also be employed. During each iteration t,
an architecture at within the population P is randomly selected and mutated. The muta-
tion involves adjusting the attributes of the selected layer within a specified range, set to
[0.5,2.0]. The newly mutated architecture at

∧

, if valid within the search spaceA, is added
to the population. The population is managed by removing architectures with the lowest
entropy to maintain its size. After T iterations, the architecture with the highest entropy
and a WCET that meets the time constraint C is selected as the output architecture.
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5 Experiments

This section presents a series of experiments conducted on the CIFAR-100 (fine-label)
[10] and ImageNet-1K [4] datasets to demonstrate the effectiveness of our proposed
approach. The experiments aim to evaluate the performance of the EVT-based WCET
estimator, compare RetNAS with manually designed ResNet architectures and other
NAS methods, and assess the impact of individual components of RetNAS.

5.1 Experimental Settings

All architecture searches and evaluations were performed on an NVIDIA Tesla A100
GPU. The evolutionary population size was set at 512, with 20,000 evolutionary itera-
tions. The threshold for theWCET estimation algorithmwas set to 0.9 with a confidence
level of 0.92. The search process was divided into ten segments by the constraint sched-
ule, with initial time constraints set at 2.5 times the target constraints. For training the
CNNs, we used the SGD optimizer with amomentum of 0.9 and aweight decay of 5e−4.
The initial learning rate was 0.1, with a batch size of 256, employing cosine learning
rate decay [15] with a 5-epoch warm-up. The training involved 1,440 epochs.

5.2 Evaluation for WCET Estimator

The initial part of our experiment validates the accuracy of the EVT-basedWCETpredic-
tionmethod.Wecollected execution timedata fromvariousCNNarchitectures during the
search process and assessed the EVT model fit to this data. Although statistical methods
do not provide a strict WCET, we adopted the 99th percentile of 10,000 sampling results
as the WCET, following prior work [18]. We compared our method with two baseline
techniques: the generalized extreme value (GEV) modeling [2] and the 99%-Observed
method [18], using different sample sizes to evaluate mean absolute error (MAE) and
average time cost. Table 2 demonstrates that our EVT-based WCET estimator outper-
forms the baselines in accuracy, achieving the precision of the 99%-Observed method
with 4,000 samples using only 1,000 samples. This indicates our method’s efficiency
in gathering execution time data, underscoring its potential to enhance NAS evaluation
processes significantly (Table 1).

5.3 Comparison with Hand-Crafted Neural Architecture

We evaluated RetNAS against established architectures including the ResNet [6],
MobileNet(V3) [8], DenseNet [9], and GoogleNet [25] families. Specific models tested
were ResNet18, ResNet34, ResNet50, ResNet101, MobileNet(V3)-S, MobileNet(V3)-
L, DenseNet121, DenseNet-161. This evaluation focused onWCET and top-1 accuracy.
For fair comparison, CNNs designed by RetNAS with linear scheduling were matched
against ResNets with similar WCETs. Results on CIFAR-100 (Fig. 4) show RetNAS
models achieving accuracies between 76.65% and 83.25% across WCETs from 3.9 ms
to 16.8 ms, outperforming equivalent ResNet models in accuracy under similar WCET
conditions (Fig. 3).
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Fig. 3. WCET vs. top-1 accuracy of each model on CIFAR-100.

Table 1. Performance comparison of different WCET estimation methods.

Number of Samples MAE Time Cost (s)

GPD 500 0.62 2.10

1,000 0.32 4.20

GEV 500 1.03 2.10

1,000 0.85 4.21

99%-Observed 500 0.85 2.09

1,000 0.70 4.19

2,000 0.52 8.39

4,000 0.31 16.75

RetNAS also excelled in designing state-of-the-art CNNs for ImageNet-1K classi-
fication, compared against contemporary CNN and ViT models, as shown in Table 2.
Despite the high performance of ViTs, their substantial computational demands make
them less suitable for real-time applications. RetNAS-designed CNNs achieve supe-
rior accuracy with WCETs comparable to those of ResNets, highlighting RetNAS’s
efficiency in crafting high-accuracy, real-time neural network architectures.

5.4 Comparative Analysis with SOTA NAS Methods

To assess RetNAS’s effectiveness in real-time neural network architecture design, we
compared it against modified versions of two SOTA NAS methods, DeepMAD and
MnasNet, adapted for real-time constraints. DeepMAD treats time constraints as rigid
limits, while MnasNet integrates them into its optimization, seeking Pareto-optimal
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Table 2. Comparison with SOTA ViT and CNN models on ImageNet-1K.

Model # Param WCET(ms) Top-1 Accuracy(%)

ResNet50 [6] 26M 10.1 77.5

PVT-S [27] 25M 18.3 79.8

Swin-T [13] 29M 17.4 81.3

ConvNext-T [14] 29M 11.0 82.1

RetNAS 28M 10.0 82.2

ResNet101 [6] 45M 16.0 78.3

PVT-L [27] 61M 37.2 81.8

Swin-S [13] 50M 24.5 83.0

ConvNext-S [14] 50M 16.2 83.1

RetNAS 50M 16.0 83.5

solutions. Our comparative experiment targeted a WCET of 5 ms, evaluating metrics
such as entropy (proxy for accuracy), time satisfiability, and search cost, defined as
GPU-hours consumed by the NAS. Table 3 illustrates RetNAS’s performance against
DeepMAD and MnasNet, showcasing its superior ability to adhere to time constraints
and optimize search efficiency.WhileMnasNet shows comparable entropy values, it sig-
nificantly underperforms in time satisfiability, indicating inconsistencies inmeeting time
constraints. RetNAS, available in linear and exponential variants, demonstrates nuanced
differences in handling constraints: the linear variant allows broader architectural explo-
ration, whereas the exponential variant achieves slightly better time satisfiability due to
more aggressive constraint intensification. A notable result is the high time satisfiability
achieved by RetNAS, demonstrating the effectiveness of the EVT-based WCET estima-
tor in real-time network design, surpassing other SOTA NASmethods in both efficiency
and accuracy.

Table 3. Comparison with SOTA NAS methods on CIFAR-100.

Method Entropy Time Satisfiability(%) Search Cost(hour)

DeepMAD-1k [23] 1057.0 86.5 19.6

DeepMAD-2k [23] 1047.3 94.2 38.3

MnasNet-1k [26] 1087.1 74.4 20.1

MnasNet-2k [26] 1085.3 85.3 39.8

RetNAS-linear 1090.9 99.0 21.2

RetNAS-exp 1088.1 99.2 20.5
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6 Conclusion

RetNAS, our real-time neural architecture search framework, effectively balances high
accuracy and strict time constraints in real-time applications. Our extensive analysis
uncovers a significant long-tail characteristic in CNN execution times, addressed by
our novel EVT-based WCET estimator utilizing GPD. Additionally, RetNAS employs
a constraint schedule that strategically guides the search process. Validated through
rigorous experiments, RetNASproducesCNNarchitectures thatmeetWCET constraints
andmaintain high accuracy. Futureworkwill extend entropy estimationmethods to other
types of layers and improveRetNAS’s hyperparameter sensitivity to enhance its practical
application.
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